File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Spectroscopy outperforms leaf trait relationships for predicting photosynthetic capacity across different forest types

TitleSpectroscopy outperforms leaf trait relationships for predicting photosynthetic capacity across different forest types
Authors
Issue Date2021
Citation
New Phytologist, 2021 How to Cite?
AbstractLeaf trait relationships are widely used to predict ecosystem function in Terrestrial Biosphere Models (TBMs), in which leaf maximum carboxylation capacity (Vc,max), an important trait for modelling photosynthesis, can be inferred from other easier-to-measure traits. However, whether trait-Vc,max relationships are robust across different forest types remains unclear. Here we used measurements of leaf traits, including one morphological trait (leaf mass per area), three biochemical traits (leaf water content, area-based leaf nitrogen content, and leaf chlorophyll content), one physiological trait (Vc,max), as well as leaf reflectance spectra, and explored their relationships within and across three contrasting forest types in China. We found weak and forest type-specific relationships between Vc,max and the four morphological and biochemical traits (R2≤0.15), indicated by significantly changing slopes and intercepts across forest types. In contrast, reflectance spectroscopy effectively collapsed the differences in the trait-Vc,max relationships across three forest biomes into a single robust model for Vc,max (R2=0.77), and also accurately estimated the four traits (R2=0.75-0.94). These findings challenge the traditional use of empirical trait-Vc,max relationships in TBMs for estimating terrestrial plant photosynthesis, but also highlight spectroscopy as an efficient alternative for characterizing Vc,max and multi-trait variability, with critical insights into ecosystem modeling and functional trait ecology.
Persistent Identifierhttp://hdl.handle.net/10722/300897

 

DC FieldValueLanguage
dc.contributor.authorYan, Z-
dc.contributor.authorGuo, Z-
dc.contributor.authorSerbin, S-
dc.contributor.authorSong, G-
dc.contributor.authorZhao, Y-
dc.contributor.authorChen, Y-
dc.contributor.authorWu, S-
dc.contributor.authorWang, J-
dc.contributor.authorWang, X-
dc.contributor.authorLi, J-
dc.contributor.authorWang, B-
dc.contributor.authorWu, Y-
dc.contributor.authorSu, Y-
dc.contributor.authorWang, H-
dc.contributor.authorRogers, A-
dc.contributor.authorLiu, L-
dc.contributor.authorWu, J-
dc.date.accessioned2021-07-06T03:11:44Z-
dc.date.available2021-07-06T03:11:44Z-
dc.date.issued2021-
dc.identifier.citationNew Phytologist, 2021-
dc.identifier.urihttp://hdl.handle.net/10722/300897-
dc.description.abstractLeaf trait relationships are widely used to predict ecosystem function in Terrestrial Biosphere Models (TBMs), in which leaf maximum carboxylation capacity (Vc,max), an important trait for modelling photosynthesis, can be inferred from other easier-to-measure traits. However, whether trait-Vc,max relationships are robust across different forest types remains unclear. Here we used measurements of leaf traits, including one morphological trait (leaf mass per area), three biochemical traits (leaf water content, area-based leaf nitrogen content, and leaf chlorophyll content), one physiological trait (Vc,max), as well as leaf reflectance spectra, and explored their relationships within and across three contrasting forest types in China. We found weak and forest type-specific relationships between Vc,max and the four morphological and biochemical traits (R2≤0.15), indicated by significantly changing slopes and intercepts across forest types. In contrast, reflectance spectroscopy effectively collapsed the differences in the trait-Vc,max relationships across three forest biomes into a single robust model for Vc,max (R2=0.77), and also accurately estimated the four traits (R2=0.75-0.94). These findings challenge the traditional use of empirical trait-Vc,max relationships in TBMs for estimating terrestrial plant photosynthesis, but also highlight spectroscopy as an efficient alternative for characterizing Vc,max and multi-trait variability, with critical insights into ecosystem modeling and functional trait ecology.-
dc.languageeng-
dc.relation.ispartofNew Phytologist-
dc.titleSpectroscopy outperforms leaf trait relationships for predicting photosynthetic capacity across different forest types-
dc.typeArticle-
dc.identifier.emailYan, Z: zbyan@hku.hk-
dc.identifier.emailWu, S: shengwu@hku.hk-
dc.identifier.emailWang, J: lucyjing@hku.hk-
dc.identifier.emailWu, J: jinwu@hku.hk-
dc.identifier.authorityWu, J=rp02509-
dc.identifier.doi10.1111/nph.17579-
dc.identifier.hkuros323345-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats