File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Higher-form symmetry breaking at Ising transitions

TitleHigher-form symmetry breaking at Ising transitions
Authors
Issue Date2021
PublisherAmerican Physical Society. The Journal's web site is located at https://journals.aps.org/prresearch/
Citation
Physical Review Research, 2021, v. 3 n. 3, article no. 033024 How to Cite?
AbstractIn recent years, new phases of matter that are beyond the Landau paradigm of symmetry breaking have been accumulating, and to catch up with this fast development, new notions of global symmetry are introduced. Among them, the higher-form symmetry, whose symmetry charges are spatially extended, can be used to describe topologically ordered phases as the spontaneous breaking of the symmetry, and consequently unify the unconventional and conventional phases under the same conceptual framework. However, such conceptual tools have not been put into quantitative tests except for certain solvable models, therefore limiting their usage in the more generic quantum many-body systems. In this work, we study Z2 higher-form symmetry in a quantum Ising model, which is dual to the global (zero-form) Ising symmetry. We compute the expectation value of the Ising disorder operator, which is a nonlocal order parameter for the higher-form symmetry, analytically in free scalar theories and through unbiased quantum Monte Carlo simulations for the interacting fixed point in (2+1)d. From the scaling form of this extended object, we confirm that the higher-form symmetry is indeed spontaneously broken inside the paramagnetic, or quantum disordered phase (in the Landau sense), but remains symmetric in the ferromagnetic or ordered phase. At the Ising critical point, we find that the disorder operator also obeys a “perimeter” law scaling with possibly multiplicative power-law corrections. We discuss examples where both the global zero-form symmetry and the dual higher-form symmetry are preserved, in systems with a codimension-1 manifold of gapless points in momentum space. These results provide nontrivial working examples of higher-form symmetry operators, including the direct computation of one-form order parameter in an interacting conformal field theory, and open the avenue for their generic implementation in quantum many-body systems.
Persistent Identifierhttp://hdl.handle.net/10722/301741
ISSN
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorZHAO, J-
dc.contributor.authorYan, Z-
dc.contributor.authorCheng, M-
dc.contributor.authorMeng, ZY-
dc.date.accessioned2021-08-09T03:43:34Z-
dc.date.available2021-08-09T03:43:34Z-
dc.date.issued2021-
dc.identifier.citationPhysical Review Research, 2021, v. 3 n. 3, article no. 033024-
dc.identifier.issn2643-1564-
dc.identifier.urihttp://hdl.handle.net/10722/301741-
dc.description.abstractIn recent years, new phases of matter that are beyond the Landau paradigm of symmetry breaking have been accumulating, and to catch up with this fast development, new notions of global symmetry are introduced. Among them, the higher-form symmetry, whose symmetry charges are spatially extended, can be used to describe topologically ordered phases as the spontaneous breaking of the symmetry, and consequently unify the unconventional and conventional phases under the same conceptual framework. However, such conceptual tools have not been put into quantitative tests except for certain solvable models, therefore limiting their usage in the more generic quantum many-body systems. In this work, we study Z2 higher-form symmetry in a quantum Ising model, which is dual to the global (zero-form) Ising symmetry. We compute the expectation value of the Ising disorder operator, which is a nonlocal order parameter for the higher-form symmetry, analytically in free scalar theories and through unbiased quantum Monte Carlo simulations for the interacting fixed point in (2+1)d. From the scaling form of this extended object, we confirm that the higher-form symmetry is indeed spontaneously broken inside the paramagnetic, or quantum disordered phase (in the Landau sense), but remains symmetric in the ferromagnetic or ordered phase. At the Ising critical point, we find that the disorder operator also obeys a “perimeter” law scaling with possibly multiplicative power-law corrections. We discuss examples where both the global zero-form symmetry and the dual higher-form symmetry are preserved, in systems with a codimension-1 manifold of gapless points in momentum space. These results provide nontrivial working examples of higher-form symmetry operators, including the direct computation of one-form order parameter in an interacting conformal field theory, and open the avenue for their generic implementation in quantum many-body systems.-
dc.languageeng-
dc.publisherAmerican Physical Society. The Journal's web site is located at https://journals.aps.org/prresearch/-
dc.relation.ispartofPhysical Review Research-
dc.rightsCopyright [2021] by The American Physical Society. This article is available online at [http://dx.doi.org/10.1103/PhysRevResearch.3.033024].-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.titleHigher-form symmetry breaking at Ising transitions-
dc.typeArticle-
dc.identifier.emailYan, Z: zhengyan@hku.hk-
dc.identifier.emailMeng, ZY: zymeng@hku.hk-
dc.identifier.authorityMeng, ZY=rp02524-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1103/PhysRevResearch.3.033024-
dc.identifier.scopuseid_2-s2.0-85113922591-
dc.identifier.hkuros323824-
dc.identifier.volume3-
dc.identifier.issue3-
dc.identifier.spagearticle no. 033024-
dc.identifier.epagearticle no. 033024-
dc.identifier.isiWOS:000671591600007-
dc.publisher.placeUnited States-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats