File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Most human proteins made in both nucleus and cytoplasm turn over within minutes

TitleMost human proteins made in both nucleus and cytoplasm turn over within minutes
Authors
Issue Date2014
Citation
PLoS ONE, 2014, v. 9, n. 6, article no. e99346 How to Cite?
AbstractIn bacteria, protein synthesis can be coupled to transcription, but in eukaryotes it is believed to occur solely in the cytoplasm. Using pulses as short as 5 s, we find that three analogues - L-azidohomoalanine, puromycin (detected after attaching fluors using 'click' chemistry or immuno-labeling), and amino acids tagged with 'heavy' 15N and 13C (detected using secondary ion mass spectrometry) - are incorporated into the nucleus and cytoplasm in a process sensitive to translational inhibitors. The nuclear incorporation represents a significant fraction of the total, and labels in both compartments have half-lives of less than a minute; results are consistent with most newly-made peptides being destroyed soon after they are made. As nascent RNA bearing a premature termination codon (detected by fluorescence in situ hybridization) is also eliminated by a mechanism sensitive to a translational inhibitor, the nuclear turnover of peptides is probably a by-product of proof-reading the RNA for stop codons (a process known as nonsense-mediated decay). We speculate that the apparently-wasteful turnover of this previously-hidden ('dark-matter') world of peptide is involved in regulating protein production.
Persistent Identifierhttp://hdl.handle.net/10722/301774
PubMed Central ID
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorBaboo, Sabyasachi-
dc.contributor.authorBhushan, Bhaskar-
dc.contributor.authorJiang, Haibo-
dc.contributor.authorGrovenor, Chris R.M.-
dc.contributor.authorPierre, Philippe-
dc.contributor.authorDavis, Benjamin G.-
dc.contributor.authorCook, Peter R.-
dc.date.accessioned2021-08-19T02:20:42Z-
dc.date.available2021-08-19T02:20:42Z-
dc.date.issued2014-
dc.identifier.citationPLoS ONE, 2014, v. 9, n. 6, article no. e99346-
dc.identifier.urihttp://hdl.handle.net/10722/301774-
dc.description.abstractIn bacteria, protein synthesis can be coupled to transcription, but in eukaryotes it is believed to occur solely in the cytoplasm. Using pulses as short as 5 s, we find that three analogues - L-azidohomoalanine, puromycin (detected after attaching fluors using 'click' chemistry or immuno-labeling), and amino acids tagged with 'heavy' 15N and 13C (detected using secondary ion mass spectrometry) - are incorporated into the nucleus and cytoplasm in a process sensitive to translational inhibitors. The nuclear incorporation represents a significant fraction of the total, and labels in both compartments have half-lives of less than a minute; results are consistent with most newly-made peptides being destroyed soon after they are made. As nascent RNA bearing a premature termination codon (detected by fluorescence in situ hybridization) is also eliminated by a mechanism sensitive to a translational inhibitor, the nuclear turnover of peptides is probably a by-product of proof-reading the RNA for stop codons (a process known as nonsense-mediated decay). We speculate that the apparently-wasteful turnover of this previously-hidden ('dark-matter') world of peptide is involved in regulating protein production.-
dc.languageeng-
dc.relation.ispartofPLoS ONE-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.titleMost human proteins made in both nucleus and cytoplasm turn over within minutes-
dc.typeArticle-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1371/journal.pone.0099346-
dc.identifier.pmid24911415-
dc.identifier.pmcidPMC4050049-
dc.identifier.scopuseid_2-s2.0-84902593560-
dc.identifier.volume9-
dc.identifier.issue6-
dc.identifier.spagearticle no. e99346-
dc.identifier.epagearticle no. e99346-
dc.identifier.eissn1932-6203-
dc.identifier.isiWOS:000337165600075-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats