File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.3390/cells10082166
- Scopus: eid_2-s2.0-85115190776
- PMID: 34440935
- WOS: WOS:000689059200001
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Derivation of Oligodendrocyte Precursors from Adult Bone Marrow Stromal Cells for Remyelination Therapy
Title | Derivation of Oligodendrocyte Precursors from Adult Bone Marrow Stromal Cells for Remyelination Therapy |
---|---|
Authors | |
Keywords | cell therapy oligodendrocyte precursors bone marrow stromal cells directed differentiation myelin disorders |
Issue Date | 2021 |
Publisher | MDPI AG. The Journal's web site is located at http://www.mdpi.com/journal/cells |
Citation | Cells, 2021, v. 10 n. 8, p. article no. 2166 How to Cite? |
Abstract | Transplantation of oligodendrocyte precursors (OPs) is potentially therapeutic for myelin disorders but a safe and accessible cell source remains to be identified. Here we report a two-step protocol for derivation of highly enriched populations of OPs from bone marrow stromal cells of young adult rats (aMSCs). Neural progenitors among the aMSCs were expanded in non-adherent sphere-forming cultures and subsequently directed along the OP lineage with the use of glial-inducing growth factors. Immunocytochemical and flow cytometric analyses of these cells confirmed OP-like expression of Olig2, PDGFRα, NG2, and Sox10. OPs so derived formed compact myelin both in vitro, as in co-culture with purified neurons, and in vivo, following transplantation into the corpus callosum of neonatal shiverer mice. Not only did the density of myelinated axons in the corpus callosum of recipient shiverer mice reach levels comparable to those in age-matched wild-type mice, but the mean lifespan of recipient shiverer mice also far exceeded those of non-recipient shiverer mice. Our results thus promise progress in harnessing the OP-generating potential of aMSCs towards cell therapy for myelin disorders. |
Persistent Identifier | http://hdl.handle.net/10722/304560 |
ISSN | 2023 Impact Factor: 5.1 2023 SCImago Journal Rankings: 1.547 |
PubMed Central ID | |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tsui, YP | - |
dc.contributor.author | LAM, G | - |
dc.contributor.author | Wu, KLK | - |
dc.contributor.author | Li, MTS | - |
dc.contributor.author | Tam, KW | - |
dc.contributor.author | Shum, DKY | - |
dc.contributor.author | Chan, YS | - |
dc.date.accessioned | 2021-09-23T09:01:48Z | - |
dc.date.available | 2021-09-23T09:01:48Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Cells, 2021, v. 10 n. 8, p. article no. 2166 | - |
dc.identifier.issn | 2073-4409 | - |
dc.identifier.uri | http://hdl.handle.net/10722/304560 | - |
dc.description.abstract | Transplantation of oligodendrocyte precursors (OPs) is potentially therapeutic for myelin disorders but a safe and accessible cell source remains to be identified. Here we report a two-step protocol for derivation of highly enriched populations of OPs from bone marrow stromal cells of young adult rats (aMSCs). Neural progenitors among the aMSCs were expanded in non-adherent sphere-forming cultures and subsequently directed along the OP lineage with the use of glial-inducing growth factors. Immunocytochemical and flow cytometric analyses of these cells confirmed OP-like expression of Olig2, PDGFRα, NG2, and Sox10. OPs so derived formed compact myelin both in vitro, as in co-culture with purified neurons, and in vivo, following transplantation into the corpus callosum of neonatal shiverer mice. Not only did the density of myelinated axons in the corpus callosum of recipient shiverer mice reach levels comparable to those in age-matched wild-type mice, but the mean lifespan of recipient shiverer mice also far exceeded those of non-recipient shiverer mice. Our results thus promise progress in harnessing the OP-generating potential of aMSCs towards cell therapy for myelin disorders. | - |
dc.language | eng | - |
dc.publisher | MDPI AG. The Journal's web site is located at http://www.mdpi.com/journal/cells | - |
dc.relation.ispartof | Cells | - |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.subject | cell therapy | - |
dc.subject | oligodendrocyte precursors | - |
dc.subject | bone marrow stromal cells | - |
dc.subject | directed differentiation | - |
dc.subject | myelin disorders | - |
dc.title | Derivation of Oligodendrocyte Precursors from Adult Bone Marrow Stromal Cells for Remyelination Therapy | - |
dc.type | Article | - |
dc.identifier.email | Wu, KLK: lwu03@hku.hk | - |
dc.identifier.email | Li, MTS: tsliaa@connect.hku.hk | - |
dc.identifier.email | Tam, KW: tamkw@hku.hk | - |
dc.identifier.email | Shum, DKY: shumdkhk@hkucc.hku.hk | - |
dc.identifier.email | Chan, YS: yschan@hku.hk | - |
dc.identifier.authority | Shum, DKY=rp00321 | - |
dc.identifier.authority | Chan, YS=rp00318 | - |
dc.description.nature | published_or_final_version | - |
dc.identifier.doi | 10.3390/cells10082166 | - |
dc.identifier.pmid | 34440935 | - |
dc.identifier.pmcid | PMC8391516 | - |
dc.identifier.scopus | eid_2-s2.0-85115190776 | - |
dc.identifier.hkuros | 325684 | - |
dc.identifier.volume | 10 | - |
dc.identifier.issue | 8 | - |
dc.identifier.spage | article no. 2166 | - |
dc.identifier.epage | article no. 2166 | - |
dc.identifier.isi | WOS:000689059200001 | - |
dc.publisher.place | Switzerland | - |