File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Book Chapter: Orlicz Version of Mixed Mean Dual Affine Quermassintegrals

TitleOrlicz Version of Mixed Mean Dual Affine Quermassintegrals
Authors
Issue Date2021
PublisherSpringer International Publishing
Citation
Orlicz Version of Mixed Mean Dual Affine Quermassintegrals. In Rassias, TM (Ed.), Approximation Theory and Analytic Inequalities, p. 509-527. Cham: Springer International Publishing, 2021 How to Cite?
AbstractIn this paper, our main aim is to generalize the mixed mean dual affine quermassintegrals to the Orlicz space. Under the framework of Orlicz dual Brunn–Minkowski theory, we introduce a new geometric operator by calculating the first Orlicz variation of the mixed mean dual affine quermassintegrals and call it the Orlicz mixed mean dual affine quermassintegrals. The fundamental notions and conclusions of the mixed mean dual affine quermassintegrals, and the Minkowski and Brunn–Minkowski inequalities for the mixed mean dual affine quermassintegrals are extended to an Orlicz setting, and the related concepts and inequalities of Orlicz dual quermassintegrals are also included in our conclusions. The new Orlicz isoperimetric inequalities in special case yield the Orlicz dual Minkowski inequality and Orlicz dual Brunn–Minkowski inequality, which also imply the Lp-dual Minkowski inequality and Brunn–Minkowski inequality for the mixed mean dual affine quermassintegrals.
Persistent Identifierhttp://hdl.handle.net/10722/304577
ISBN

 

DC FieldValueLanguage
dc.contributor.authorZhao, CJ-
dc.contributor.authorCheung, WS-
dc.date.accessioned2021-09-27T09:16:22Z-
dc.date.available2021-09-27T09:16:22Z-
dc.date.issued2021-
dc.identifier.citationOrlicz Version of Mixed Mean Dual Affine Quermassintegrals. In Rassias, TM (Ed.), Approximation Theory and Analytic Inequalities, p. 509-527. Cham: Springer International Publishing, 2021-
dc.identifier.isbn9783030606213-
dc.identifier.urihttp://hdl.handle.net/10722/304577-
dc.description.abstractIn this paper, our main aim is to generalize the mixed mean dual affine quermassintegrals to the Orlicz space. Under the framework of Orlicz dual Brunn–Minkowski theory, we introduce a new geometric operator by calculating the first Orlicz variation of the mixed mean dual affine quermassintegrals and call it the Orlicz mixed mean dual affine quermassintegrals. The fundamental notions and conclusions of the mixed mean dual affine quermassintegrals, and the Minkowski and Brunn–Minkowski inequalities for the mixed mean dual affine quermassintegrals are extended to an Orlicz setting, and the related concepts and inequalities of Orlicz dual quermassintegrals are also included in our conclusions. The new Orlicz isoperimetric inequalities in special case yield the Orlicz dual Minkowski inequality and Orlicz dual Brunn–Minkowski inequality, which also imply the Lp-dual Minkowski inequality and Brunn–Minkowski inequality for the mixed mean dual affine quermassintegrals.-
dc.languageeng-
dc.publisherSpringer International Publishing-
dc.relation.ispartofApproximation Theory and Analytic Inequalities-
dc.titleOrlicz Version of Mixed Mean Dual Affine Quermassintegrals-
dc.typeBook_Chapter-
dc.identifier.emailCheung, WS: wscheung@hku.hk-
dc.identifier.authorityCheung, WS=rp00678-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1007/978-3-030-60622-0_25-
dc.identifier.hkuros324985-
dc.identifier.spage509-
dc.identifier.epage527-
dc.publisher.placeCham-
dc.identifier.eisbn9783030606220-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats