File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Modelling study of the low-pump-power demand constructal T-shaped pipe network for a large scale radiative cooled-cold storage system

TitleModelling study of the low-pump-power demand constructal T-shaped pipe network for a large scale radiative cooled-cold storage system
Authors
KeywordsCold storage
Constructal theory
Pipe network
Radiative cooling
Reverse return design
Issue Date2017
Citation
Applied Thermal Engineering, 2017, v. 127, p. 1564-1573 How to Cite?
AbstractTo provide supplemental cooling to air cooled condenser (ACC) based thermo-electric power plants, radiative cooling is one of the options to ensure comparable efficiency as water cooled power plants. However, radiative cooling has relatively low energy intensity, about 100 W/m2 cooling power on daily average. To work with power plants generally at few hundreds of megawatts, an intermediate system is needed to bridge this huge energy intensity mismatching at low energy cost. A low-pump-power demand pipe network is proposed to collect cold energy generated by the radiative cooling surfaces using water as the heat transfer fluid and the cold water is thus stored in intermediate storage devices. In this work, head loss and heat loss analysis models have been developed for the proposed constructal T-shaped network design, which provides convenience to integrate and scale up the radiative cooling modules to a large system to meet megawatt power plant's supplemental cooling demand. A large radiative cooling system may consist of hundreds to thousand radiative cooled-cold (RadiCold) storage subsystems at a size of about 200-kWth each. Design of the 200-kWth RadiCold subsystem with constructal T-shaped network shows 11 kWh/day for pump electricity consumption and delivers cold energy of 4096 kWth/day.
DescriptionAccepted manuscript is available on the publisher website.
Persistent Identifierhttp://hdl.handle.net/10722/310429
ISSN
2021 Impact Factor: 6.465
2020 SCImago Journal Rankings: 1.714
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorZhang, Kai-
dc.contributor.authorZhao, Dongliang-
dc.contributor.authorZhai, Yao-
dc.contributor.authorYin, Xiaobo-
dc.contributor.authorYang, Ronggui-
dc.contributor.authorTan, Gang-
dc.date.accessioned2022-01-31T06:04:50Z-
dc.date.available2022-01-31T06:04:50Z-
dc.date.issued2017-
dc.identifier.citationApplied Thermal Engineering, 2017, v. 127, p. 1564-1573-
dc.identifier.issn1359-4311-
dc.identifier.urihttp://hdl.handle.net/10722/310429-
dc.descriptionAccepted manuscript is available on the publisher website.-
dc.description.abstractTo provide supplemental cooling to air cooled condenser (ACC) based thermo-electric power plants, radiative cooling is one of the options to ensure comparable efficiency as water cooled power plants. However, radiative cooling has relatively low energy intensity, about 100 W/m2 cooling power on daily average. To work with power plants generally at few hundreds of megawatts, an intermediate system is needed to bridge this huge energy intensity mismatching at low energy cost. A low-pump-power demand pipe network is proposed to collect cold energy generated by the radiative cooling surfaces using water as the heat transfer fluid and the cold water is thus stored in intermediate storage devices. In this work, head loss and heat loss analysis models have been developed for the proposed constructal T-shaped network design, which provides convenience to integrate and scale up the radiative cooling modules to a large system to meet megawatt power plant's supplemental cooling demand. A large radiative cooling system may consist of hundreds to thousand radiative cooled-cold (RadiCold) storage subsystems at a size of about 200-kWth each. Design of the 200-kWth RadiCold subsystem with constructal T-shaped network shows 11 kWh/day for pump electricity consumption and delivers cold energy of 4096 kWth/day.-
dc.languageeng-
dc.relation.ispartofApplied Thermal Engineering-
dc.subjectCold storage-
dc.subjectConstructal theory-
dc.subjectPipe network-
dc.subjectRadiative cooling-
dc.subjectReverse return design-
dc.titleModelling study of the low-pump-power demand constructal T-shaped pipe network for a large scale radiative cooled-cold storage system-
dc.typeArticle-
dc.description.naturelink_to_OA_fulltext-
dc.identifier.doi10.1016/j.applthermaleng.2017.08.131-
dc.identifier.scopuseid_2-s2.0-85029380855-
dc.identifier.volume127-
dc.identifier.spage1564-
dc.identifier.epage1573-
dc.identifier.isiWOS:000413608400149-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats