File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Electromyographic Analysis of Paraspinal Muscles of Scoliosis Patients Using Machine Learning Approaches

TitleElectromyographic Analysis of Paraspinal Muscles of Scoliosis Patients Using Machine Learning Approaches
Authors
Issue Date2022
Citation
International Journal of Environmental Research and Public Health, 2022, v. 19, p. 1177 How to Cite?
Persistent Identifierhttp://hdl.handle.net/10722/311318
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorLiang, RX-
dc.contributor.authorYip, J-
dc.contributor.authorFAN, Y-
dc.contributor.authorCheung, JPY-
dc.contributor.authorTo, MKT-
dc.date.accessioned2022-03-21T08:47:59Z-
dc.date.available2022-03-21T08:47:59Z-
dc.date.issued2022-
dc.identifier.citationInternational Journal of Environmental Research and Public Health, 2022, v. 19, p. 1177-
dc.identifier.urihttp://hdl.handle.net/10722/311318-
dc.languageeng-
dc.relation.ispartofInternational Journal of Environmental Research and Public Health-
dc.titleElectromyographic Analysis of Paraspinal Muscles of Scoliosis Patients Using Machine Learning Approaches-
dc.typeArticle-
dc.identifier.emailCheung, JPY: cheungjp@hku.hk-
dc.identifier.emailTo, MKT: mikektto@hku.hk-
dc.identifier.authorityCheung, JPY=rp01685-
dc.identifier.authorityTo, MKT=rp00302-
dc.identifier.doi10.3390/ijerph19031177-
dc.identifier.hkuros332164-
dc.identifier.volume19-
dc.identifier.spage1177-
dc.identifier.epage1177-
dc.identifier.isiWOS:000756298100001-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats