File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Pedestrian volume prediction with high spatiotemporal granularity in urban areas by the enhanced learning model

TitlePedestrian volume prediction with high spatiotemporal granularity in urban areas by the enhanced learning model
Authors
Issue Date2022
Citation
Sustainable Cities and Society, 2022, v. 79, p. 103653 How to Cite?
Persistent Identifierhttp://hdl.handle.net/10722/311822
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorJiang, F-
dc.contributor.authorMa, J-
dc.contributor.authorLI, Z-
dc.date.accessioned2022-04-01T09:13:39Z-
dc.date.available2022-04-01T09:13:39Z-
dc.date.issued2022-
dc.identifier.citationSustainable Cities and Society, 2022, v. 79, p. 103653-
dc.identifier.urihttp://hdl.handle.net/10722/311822-
dc.languageeng-
dc.relation.ispartofSustainable Cities and Society-
dc.titlePedestrian volume prediction with high spatiotemporal granularity in urban areas by the enhanced learning model-
dc.typeArticle-
dc.identifier.emailJiang, F: ffjiang@hku.hk-
dc.identifier.emailMa, J: junma@hku.hk-
dc.identifier.authorityMa, J=rp02719-
dc.identifier.doi10.1016/j.scs.2021.103653-
dc.identifier.hkuros332273-
dc.identifier.volume79-
dc.identifier.spage103653-
dc.identifier.epage103653-
dc.identifier.isiWOS:000781384900004-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats