File Download
There are no files associated with this item.
Supplementary
-
Citations:
- Appears in Collections:
Article: Prediction of energy use intensity of urban buildings using the semi-supervised deep learning model
Title | Prediction of energy use intensity of urban buildings using the semi-supervised deep learning model |
---|---|
Authors | |
Issue Date | 2022 |
Citation | Energy, 2022, v. 249, p. 123631 How to Cite? |
Persistent Identifier | http://hdl.handle.net/10722/311823 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jiang, F | - |
dc.contributor.author | Ma, J | - |
dc.contributor.author | LI, Z | - |
dc.contributor.author | Ding, Y | - |
dc.date.accessioned | 2022-04-01T09:13:39Z | - |
dc.date.available | 2022-04-01T09:13:39Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Energy, 2022, v. 249, p. 123631 | - |
dc.identifier.uri | http://hdl.handle.net/10722/311823 | - |
dc.language | eng | - |
dc.relation.ispartof | Energy | - |
dc.title | Prediction of energy use intensity of urban buildings using the semi-supervised deep learning model | - |
dc.type | Article | - |
dc.identifier.email | Jiang, F: ffjiang@hku.hk | - |
dc.identifier.email | Ma, J: junma@hku.hk | - |
dc.identifier.authority | Ma, J=rp02719 | - |
dc.identifier.doi | 10.1016/j.energy.2022.123631 | - |
dc.identifier.hkuros | 332274 | - |
dc.identifier.volume | 249 | - |
dc.identifier.spage | 123631 | - |
dc.identifier.epage | 123631 | - |