File Download

There are no files associated with this item.

Supplementary

Article: Neuroevolution machine learning potentials: Combining high accuracy and low cost in atomistic simulations and application to heat transport

TitleNeuroevolution machine learning potentials: Combining high accuracy and low cost in atomistic simulations and application to heat transport
Authors
Issue Date2021
Citation
Physical Review B, 2021, v. 104 n. 10, p. 104309 How to Cite?
Persistent Identifierhttp://hdl.handle.net/10722/314692

 

DC FieldValueLanguage
dc.contributor.authorFan, Z-
dc.contributor.authorZeng, Z-
dc.contributor.authorZhang, C-
dc.contributor.authorWang, Y-
dc.contributor.authorSong, K-
dc.contributor.authorDong, H-
dc.contributor.authorChen, Y-
dc.contributor.authorAla-Nissila, T-
dc.date.accessioned2022-08-05T09:32:52Z-
dc.date.available2022-08-05T09:32:52Z-
dc.date.issued2021-
dc.identifier.citationPhysical Review B, 2021, v. 104 n. 10, p. 104309-
dc.identifier.urihttp://hdl.handle.net/10722/314692-
dc.languageeng-
dc.relation.ispartofPhysical Review B-
dc.titleNeuroevolution machine learning potentials: Combining high accuracy and low cost in atomistic simulations and application to heat transport-
dc.typeArticle-
dc.identifier.emailChen, Y: yuechen@hku.hk-
dc.identifier.authorityChen, Y=rp01925-
dc.identifier.hkuros334983-
dc.identifier.volume104-
dc.identifier.issue10-
dc.identifier.spage104309-
dc.identifier.epage104309-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats