File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Biomimetic Lipid‐Bilayer Anode Protection for Long Lifetime Aqueous Zinc‐Metal Batteries

TitleBiomimetic Lipid‐Bilayer Anode Protection for Long Lifetime Aqueous Zinc‐Metal Batteries
Authors
Keywordsaqueous electrolytes
areal capacity
biomimetic lipid-bilayer structures
dendrite suppression
PES
zinc-ion batteries
Issue Date2022
PublisherWiley-VCH GmbH. The Journal's web site is located at http://www.wiley-vch.de/home/afm
Citation
Advanced Functional Materials, 2022, v. 32 n. 34, article no. 2203019 How to Cite?
AbstractThe practical application of rechargeable aqueous zinc batteries is impeded by dendrite growth, especially at high areal capacities and high current densities. Here, this challenge is addressed by proposing zinc perfluoro(2-ethoxyethane)sulfonic (Zn(PES)2) as a zinc battery electrolyte. This new amphipathic zinc salt, with a hydrophobic perfluorinated tail, can form an anode protecting layer, in situ, with a biomimetic lipid-bilayer structure. The layer limits the anode contact with free H2O and offers fast Zn2+ transport pathways, thereby effectively suppressing dendrite growth while maintaining high rate capability. A stable, Zn2+-conductive fluorinated solid electrolyte interphase (SEI) is also formed, further enhancing zinc reversibility. The electrolyte enables unprecedented cycling stability with dendrite-free zinc plating/stripping over 1600 h at 1 mA cm−2 at 2 mAh cm−2, and over 380 h under an even harsher condition of 2.5 mA cm−2 and 5 mAh cm−2. Full cell tests with a high-loading VS2 cathode demonstrate good capacity retention of 78% after 1000 cycles at 1.5 mA cm−2. The idea of in situ formation of a biomimetic lipid-bilayer anode protecting layer and fluorinated SEI opens a new route for engineering the electrode–electrolyte interface toward next-generation aqueous zinc batteries with long lifetime and high areal capacities.
Persistent Identifierhttp://hdl.handle.net/10722/314702
ISSN
2021 Impact Factor: 19.924
2020 SCImago Journal Rankings: 6.069
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorZhao, Y-
dc.contributor.authorOuyang, M-
dc.contributor.authorWang, Y-
dc.contributor.authorQin, R-
dc.contributor.authorZhang, H-
dc.contributor.authorPan, W-
dc.contributor.authorLeung, YCD-
dc.contributor.authorWu, B-
dc.contributor.authorLiu, X-
dc.contributor.authorBrandon, NP-
dc.contributor.authorXuan, J-
dc.contributor.authorPan, F-
dc.contributor.authorWang, H-
dc.date.accessioned2022-08-05T09:33:03Z-
dc.date.available2022-08-05T09:33:03Z-
dc.date.issued2022-
dc.identifier.citationAdvanced Functional Materials, 2022, v. 32 n. 34, article no. 2203019-
dc.identifier.issn1616-301X-
dc.identifier.urihttp://hdl.handle.net/10722/314702-
dc.description.abstractThe practical application of rechargeable aqueous zinc batteries is impeded by dendrite growth, especially at high areal capacities and high current densities. Here, this challenge is addressed by proposing zinc perfluoro(2-ethoxyethane)sulfonic (Zn(PES)2) as a zinc battery electrolyte. This new amphipathic zinc salt, with a hydrophobic perfluorinated tail, can form an anode protecting layer, in situ, with a biomimetic lipid-bilayer structure. The layer limits the anode contact with free H2O and offers fast Zn2+ transport pathways, thereby effectively suppressing dendrite growth while maintaining high rate capability. A stable, Zn2+-conductive fluorinated solid electrolyte interphase (SEI) is also formed, further enhancing zinc reversibility. The electrolyte enables unprecedented cycling stability with dendrite-free zinc plating/stripping over 1600 h at 1 mA cm−2 at 2 mAh cm−2, and over 380 h under an even harsher condition of 2.5 mA cm−2 and 5 mAh cm−2. Full cell tests with a high-loading VS2 cathode demonstrate good capacity retention of 78% after 1000 cycles at 1.5 mA cm−2. The idea of in situ formation of a biomimetic lipid-bilayer anode protecting layer and fluorinated SEI opens a new route for engineering the electrode–electrolyte interface toward next-generation aqueous zinc batteries with long lifetime and high areal capacities.-
dc.languageeng-
dc.publisherWiley-VCH GmbH. The Journal's web site is located at http://www.wiley-vch.de/home/afm-
dc.relation.ispartofAdvanced Functional Materials-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subjectaqueous electrolytes-
dc.subjectareal capacity-
dc.subjectbiomimetic lipid-bilayer structures-
dc.subjectdendrite suppression-
dc.subjectPES-
dc.subjectzinc-ion batteries-
dc.titleBiomimetic Lipid‐Bilayer Anode Protection for Long Lifetime Aqueous Zinc‐Metal Batteries-
dc.typeArticle-
dc.identifier.emailPan, W: wdpan21@hku.hk-
dc.identifier.emailLeung, YCD: ycleung@hku.hk-
dc.identifier.authorityLeung, YCD=rp00149-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1002/adfm.202203019-
dc.identifier.scopuseid_2-s2.0-85131838054-
dc.identifier.hkuros335249-
dc.identifier.volume32-
dc.identifier.issue34-
dc.identifier.spage2203019-
dc.identifier.spagearticle no. 2203019-
dc.identifier.epage2203019-
dc.identifier.epagearticle no. 2203019-
dc.identifier.isiWOS:000811087800001-
dc.publisher.placeGermany-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats