File Download
Supplementary

postgraduate thesis: Motion-corrected compressed sensing reconstruction of undersampled radial abdominal 4D-MRI for respiratory motion management in radiotherapy

TitleMotion-corrected compressed sensing reconstruction of undersampled radial abdominal 4D-MRI for respiratory motion management in radiotherapy
Authors
Issue Date2022
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Citation
Wong, Y. L. [黃逸霖]. (2022). Motion-corrected compressed sensing reconstruction of undersampled radial abdominal 4D-MRI for respiratory motion management in radiotherapy. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR.
DegreeMaster of Medical Sciences
SubjectCancer - Radiotherapy
Respiration
Dept/ProgramDiagnostic Radiology
Persistent Identifierhttp://hdl.handle.net/10722/317174

 

DC FieldValueLanguage
dc.contributor.authorWong, Yat Lam-
dc.contributor.author黃逸霖-
dc.date.accessioned2022-10-03T07:25:50Z-
dc.date.available2022-10-03T07:25:50Z-
dc.date.issued2022-
dc.identifier.citationWong, Y. L. [黃逸霖]. (2022). Motion-corrected compressed sensing reconstruction of undersampled radial abdominal 4D-MRI for respiratory motion management in radiotherapy. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR.-
dc.identifier.urihttp://hdl.handle.net/10722/317174-
dc.languageeng-
dc.publisherThe University of Hong Kong (Pokfulam, Hong Kong)-
dc.relation.ispartofHKU Theses Online (HKUTO)-
dc.rightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works.-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subject.lcshCancer - Radiotherapy-
dc.subject.lcshRespiration-
dc.titleMotion-corrected compressed sensing reconstruction of undersampled radial abdominal 4D-MRI for respiratory motion management in radiotherapy-
dc.typePG_Thesis-
dc.description.thesisnameMaster of Medical Sciences-
dc.description.thesislevelMaster-
dc.description.thesisdisciplineDiagnostic Radiology-
dc.description.naturepublished_or_final_version-
dc.date.hkucongregation2022-
dc.identifier.mmsid991044596409503414-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats