File Download

There are no files associated with this item.

Conference Paper: Training, validation and testing of a multiscale three-dimensional deep learning algorithm in accurately diagnosing hepatocellular carcinoma on computed tomography. Oral Presentation (OS105)

TitleTraining, validation and testing of a multiscale three-dimensional deep learning algorithm in accurately diagnosing hepatocellular carcinoma on computed tomography. Oral Presentation (OS105)
Authors
Issue Date2022
Citation
The International Liver Congress 2022, 22-26 June 2022. Journal of Hepatology, v. 77 n. S1, p. S78-79 How to Cite?
Persistent Identifierhttp://hdl.handle.net/10722/318195

 

DC FieldValueLanguage
dc.contributor.authorSeto, WKW-
dc.contributor.authorChiu, WHK-
dc.contributor.authorLui, G-
dc.contributor.authorZhou, CHENG-
dc.contributor.authorCheng, HM-
dc.contributor.authorWu, J-
dc.contributor.authorShen, XP-
dc.contributor.authorMak, LY-
dc.contributor.authorHuang, JH-
dc.contributor.authorLi, WK-
dc.contributor.authorYuen, RMF-
dc.contributor.authorYu, PLH-
dc.date.accessioned2022-10-07T10:34:24Z-
dc.date.available2022-10-07T10:34:24Z-
dc.date.issued2022-
dc.identifier.citationThe International Liver Congress 2022, 22-26 June 2022. Journal of Hepatology, v. 77 n. S1, p. S78-79-
dc.identifier.urihttp://hdl.handle.net/10722/318195-
dc.languageeng-
dc.relation.ispartofThe International Liver Congress 2022, 22-26 June 2022. Journal of Hepatology-
dc.titleTraining, validation and testing of a multiscale three-dimensional deep learning algorithm in accurately diagnosing hepatocellular carcinoma on computed tomography. Oral Presentation (OS105)-
dc.typeConference_Paper-
dc.identifier.emailSeto, WKW: wkseto@hku.hk-
dc.identifier.emailCheng, HM: hmcheng@hku.hk-
dc.identifier.emailMak, LY: lungyi@hku.hk-
dc.identifier.emailYuen, RMF: mfyuen@hku.hk-
dc.identifier.emailYu, PLH: plhyu@hku.hk-
dc.identifier.authoritySeto, WKW=rp01659-
dc.identifier.authorityChiu, WHK=rp02074-
dc.identifier.authorityMak, LY=rp02668-
dc.identifier.authorityYuen, RMF=rp00479-
dc.identifier.authorityYu, PLH=rp00835-
dc.identifier.hkuros337672-
dc.identifier.volume77-
dc.identifier.issueS1-
dc.identifier.spageS78-
dc.identifier.epage79-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats