File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1021/nl062766o
- Scopus: eid_2-s2.0-33847753146
- Find via
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: Electrochemical nanoimprinting with solid-state superionic stamps
Title | Electrochemical nanoimprinting with solid-state superionic stamps |
---|---|
Authors | |
Issue Date | 2007 |
Citation | Nano Letters, 2007, v. 7, n. 2, p. 446-451 How to Cite? |
Abstract | This letter presents a solid-state electrochemical nanoimprint process for direct patterning of metallic nanostructures. It uses a patterned solid electrolyte or superionic conductor (such as silver sulfide) as a stamp and etches a metallic film by an electrochemical reaction. Our preliminary experiments demonstrate repeatable and high-fidelity pattern transfer with features down to 50 nm on silver films of thicknesses ranging from 50 to 500 nm. As the process is conducted in an ambient environment and does not involve the use of liquids, it displays potential for single-step, high-throughput, large-area manufacturing of metallic nanostructures. The use of superionic conductors in manufacturing opens up a new and potentially energy-efficient approach to nanopatterning and fabrication. It offers a highly competitive approach, both as a stand-alone process and as a complement of other nanofabrication techniques, to fabricating chemical sensors, photonic and plasmonic structures, and electronic interconnects. © 2007 American Chemical Society. |
Persistent Identifier | http://hdl.handle.net/10722/318442 |
ISSN | 2023 Impact Factor: 9.6 2023 SCImago Journal Rankings: 3.411 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hsu, Keng H. | - |
dc.contributor.author | Schultz, Peter L. | - |
dc.contributor.author | Ferreira, Placid M. | - |
dc.contributor.author | Fang, Nicholas X. | - |
dc.date.accessioned | 2022-10-11T12:23:46Z | - |
dc.date.available | 2022-10-11T12:23:46Z | - |
dc.date.issued | 2007 | - |
dc.identifier.citation | Nano Letters, 2007, v. 7, n. 2, p. 446-451 | - |
dc.identifier.issn | 1530-6984 | - |
dc.identifier.uri | http://hdl.handle.net/10722/318442 | - |
dc.description.abstract | This letter presents a solid-state electrochemical nanoimprint process for direct patterning of metallic nanostructures. It uses a patterned solid electrolyte or superionic conductor (such as silver sulfide) as a stamp and etches a metallic film by an electrochemical reaction. Our preliminary experiments demonstrate repeatable and high-fidelity pattern transfer with features down to 50 nm on silver films of thicknesses ranging from 50 to 500 nm. As the process is conducted in an ambient environment and does not involve the use of liquids, it displays potential for single-step, high-throughput, large-area manufacturing of metallic nanostructures. The use of superionic conductors in manufacturing opens up a new and potentially energy-efficient approach to nanopatterning and fabrication. It offers a highly competitive approach, both as a stand-alone process and as a complement of other nanofabrication techniques, to fabricating chemical sensors, photonic and plasmonic structures, and electronic interconnects. © 2007 American Chemical Society. | - |
dc.language | eng | - |
dc.relation.ispartof | Nano Letters | - |
dc.title | Electrochemical nanoimprinting with solid-state superionic stamps | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1021/nl062766o | - |
dc.identifier.scopus | eid_2-s2.0-33847753146 | - |
dc.identifier.volume | 7 | - |
dc.identifier.issue | 2 | - |
dc.identifier.spage | 446 | - |
dc.identifier.epage | 451 | - |