File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1038/s41598-017-18744-6
- Scopus: eid_2-s2.0-85040460315
- PMID: 29323240
- WOS: WOS:000419941000019
Supplementary
- Citations:
- Appears in Collections:
Article: Engineered 3D-printed artificial axons
Title | Engineered 3D-printed artificial axons |
---|---|
Authors | |
Issue Date | 2018 |
Citation | Scientific Reports, 2018, v. 8, n. 1, article no. 478 How to Cite? |
Abstract | Myelination is critical for transduction of neuronal signals, neuron survival and normal function of the nervous system. Myelin disorders account for many debilitating neurological diseases such as multiple sclerosis and leukodystrophies. The lack of experimental models and tools to observe and manipulate this process in vitro has constrained progress in understanding and promoting myelination, and ultimately developing effective remyelination therapies. To address this problem, we developed synthetic mimics of neuronal axons, representing key geometric, mechanical, and surface chemistry components of biological axons. These artificial axons exhibit low mechanical stiffness approaching that of a human axon, over unsupported spans that facilitate engagement and wrapping by glial cells, to enable study of myelination in environments reflecting mechanical cues that neurons present in vivo. Our 3D printing approach provides the capacity to vary independently the complex features of the artificial axons that can reflect specific states of development, disease, or injury. Here, we demonstrate that oligodendrocytes' production and wrapping of myelin depend on artificial axon stiffness, diameter, and ligand coating. This biofidelic platform provides direct visualization and quantification of myelin formation and myelinating cells' response to both physical cues and pharmacological agents. |
Persistent Identifier | http://hdl.handle.net/10722/318695 |
PubMed Central ID | |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Espinosa-Hoyos, Daniela | - |
dc.contributor.author | Jagielska, Anna | - |
dc.contributor.author | Homan, Kimberly A. | - |
dc.contributor.author | Du, Huifeng | - |
dc.contributor.author | Busbee, Travis | - |
dc.contributor.author | Anderson, Daniel G. | - |
dc.contributor.author | Fang, Nicholas X. | - |
dc.contributor.author | Lewis, Jennifer A. | - |
dc.contributor.author | Van Vliet, Krystyn J. | - |
dc.date.accessioned | 2022-10-11T12:24:21Z | - |
dc.date.available | 2022-10-11T12:24:21Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Scientific Reports, 2018, v. 8, n. 1, article no. 478 | - |
dc.identifier.uri | http://hdl.handle.net/10722/318695 | - |
dc.description.abstract | Myelination is critical for transduction of neuronal signals, neuron survival and normal function of the nervous system. Myelin disorders account for many debilitating neurological diseases such as multiple sclerosis and leukodystrophies. The lack of experimental models and tools to observe and manipulate this process in vitro has constrained progress in understanding and promoting myelination, and ultimately developing effective remyelination therapies. To address this problem, we developed synthetic mimics of neuronal axons, representing key geometric, mechanical, and surface chemistry components of biological axons. These artificial axons exhibit low mechanical stiffness approaching that of a human axon, over unsupported spans that facilitate engagement and wrapping by glial cells, to enable study of myelination in environments reflecting mechanical cues that neurons present in vivo. Our 3D printing approach provides the capacity to vary independently the complex features of the artificial axons that can reflect specific states of development, disease, or injury. Here, we demonstrate that oligodendrocytes' production and wrapping of myelin depend on artificial axon stiffness, diameter, and ligand coating. This biofidelic platform provides direct visualization and quantification of myelin formation and myelinating cells' response to both physical cues and pharmacological agents. | - |
dc.language | eng | - |
dc.relation.ispartof | Scientific Reports | - |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.title | Engineered 3D-printed artificial axons | - |
dc.type | Article | - |
dc.description.nature | published_or_final_version | - |
dc.identifier.doi | 10.1038/s41598-017-18744-6 | - |
dc.identifier.pmid | 29323240 | - |
dc.identifier.pmcid | PMC5765144 | - |
dc.identifier.scopus | eid_2-s2.0-85040460315 | - |
dc.identifier.volume | 8 | - |
dc.identifier.issue | 1 | - |
dc.identifier.spage | article no. 478 | - |
dc.identifier.epage | article no. 478 | - |
dc.identifier.eissn | 2045-2322 | - |
dc.identifier.isi | WOS:000419941000019 | - |