File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1111/jace.16983
- Scopus: eid_2-s2.0-85078045003
- WOS: WOS:000506905400001
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Formation criterion for binary metal diboride solid solutions established through combinatorial methods
Title | Formation criterion for binary metal diboride solid solutions established through combinatorial methods |
---|---|
Authors | |
Keywords | first-principles calculations high-throughput methods machine learning metal diborides solid-solution ceramics |
Issue Date | 2020 |
Citation | Journal of the American Ceramic Society, 2020, v. 103, n. 5, p. 3338-3348 How to Cite? |
Abstract | Establishing the formation criterion is urgent for accelerating the discovery and design of solid-solution materials with desirable properties. The previously reported formation criterion mainly focused on solid-solution alloys, while the formation criterion was rarely established in solid-solution ceramics. To solve this problem, herein, we take a class of solid-solution ceramics, namely binary metal diboride ((MxN1-x)B2) solid solutions, as a prototype. Through combinatorial methods including high-throughput molten salt syntheses and high-throughput first-principles calculations combined with the machine learning approach, the correlation between influential factors, including atomic size difference (δ), mixing enthalpy at 0 K and 0 Pa (ΔH0Kmix), doping condition (φ), and valence electron concentration (VEC), and the formation ability of (MxN1-x)B2 solid solutions was first studied systematically, and then their formation criterion was well established. The results showed that the influential degree of the aforementioned four factors on the formation ability of (MxN1-x)B2 solid solutions could be described as follows: δ > (ΔH0Kmix) > φ > VEC. In addition, a newly proposed parameter, β, could well reflect the formation ability of (MxN1-x)B2 solid solutions: when β > 0, the single-phase (MxN1-x)B2 solid solutions could be successfully synthesized in our work and vice versa. This study may provide a theoretical guidance in the discovery and design of various solid-solution ceramics, such as the metal borides, carbides, nitrides, etc, with desirable properties. |
Persistent Identifier | http://hdl.handle.net/10722/318807 |
ISSN | 2023 Impact Factor: 3.5 2023 SCImago Journal Rankings: 0.819 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wen, Tongqi | - |
dc.contributor.author | Ye, Beilin | - |
dc.contributor.author | Liu, Honghua | - |
dc.contributor.author | Ning, Shanshan | - |
dc.contributor.author | Wang, Cai Zhuang | - |
dc.contributor.author | Chu, Yanhui | - |
dc.date.accessioned | 2022-10-11T12:24:36Z | - |
dc.date.available | 2022-10-11T12:24:36Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Journal of the American Ceramic Society, 2020, v. 103, n. 5, p. 3338-3348 | - |
dc.identifier.issn | 0002-7820 | - |
dc.identifier.uri | http://hdl.handle.net/10722/318807 | - |
dc.description.abstract | Establishing the formation criterion is urgent for accelerating the discovery and design of solid-solution materials with desirable properties. The previously reported formation criterion mainly focused on solid-solution alloys, while the formation criterion was rarely established in solid-solution ceramics. To solve this problem, herein, we take a class of solid-solution ceramics, namely binary metal diboride ((MxN1-x)B2) solid solutions, as a prototype. Through combinatorial methods including high-throughput molten salt syntheses and high-throughput first-principles calculations combined with the machine learning approach, the correlation between influential factors, including atomic size difference (δ), mixing enthalpy at 0 K and 0 Pa (ΔH0Kmix), doping condition (φ), and valence electron concentration (VEC), and the formation ability of (MxN1-x)B2 solid solutions was first studied systematically, and then their formation criterion was well established. The results showed that the influential degree of the aforementioned four factors on the formation ability of (MxN1-x)B2 solid solutions could be described as follows: δ > (ΔH0Kmix) > φ > VEC. In addition, a newly proposed parameter, β, could well reflect the formation ability of (MxN1-x)B2 solid solutions: when β > 0, the single-phase (MxN1-x)B2 solid solutions could be successfully synthesized in our work and vice versa. This study may provide a theoretical guidance in the discovery and design of various solid-solution ceramics, such as the metal borides, carbides, nitrides, etc, with desirable properties. | - |
dc.language | eng | - |
dc.relation.ispartof | Journal of the American Ceramic Society | - |
dc.subject | first-principles calculations | - |
dc.subject | high-throughput methods | - |
dc.subject | machine learning | - |
dc.subject | metal diborides | - |
dc.subject | solid-solution ceramics | - |
dc.title | Formation criterion for binary metal diboride solid solutions established through combinatorial methods | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1111/jace.16983 | - |
dc.identifier.scopus | eid_2-s2.0-85078045003 | - |
dc.identifier.volume | 103 | - |
dc.identifier.issue | 5 | - |
dc.identifier.spage | 3338 | - |
dc.identifier.epage | 3348 | - |
dc.identifier.eissn | 1551-2916 | - |
dc.identifier.isi | WOS:000506905400001 | - |