File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1038/s41467-021-21565-x
- Scopus: eid_2-s2.0-85101776962
- PMID: 33637725
- WOS: WOS:000624978300010
Supplementary
- Citations:
- Appears in Collections:
Article: Electromechanically reconfigurable optical nano-kirigami
Title | Electromechanically reconfigurable optical nano-kirigami |
---|---|
Authors | |
Issue Date | 2021 |
Citation | Nature Communications, 2021, v. 12, n. 1, article no. 1299 How to Cite? |
Abstract | Kirigami, with facile and automated fashion of three-dimensional (3D) transformations, offers an unconventional approach for realizing cutting-edge optical nano-electromechanical systems. Here, we demonstrate an on-chip and electromechanically reconfigurable nano-kirigami with optical functionalities. The nano-electromechanical system is built on an Au/SiO2/Si substrate and operated via attractive electrostatic forces between the top gold nanostructure and bottom silicon substrate. Large-range nano-kirigami like 3D deformations are clearly observed and reversibly engineered, with scalable pitch size down to 0.975 μm. Broadband nonresonant and narrowband resonant optical reconfigurations are achieved at visible and near-infrared wavelengths, respectively, with a high modulation contrast up to 494%. On-chip modulation of optical helicity is further demonstrated in submicron nano-kirigami at near-infrared wavelengths. Such small-size and high-contrast reconfigurable optical nano-kirigami provides advanced methodologies and platforms for versatile on-chip manipulation of light at nanoscale. |
Persistent Identifier | http://hdl.handle.net/10722/318914 |
PubMed Central ID | |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chen, Shanshan | - |
dc.contributor.author | Liu, Zhiguang | - |
dc.contributor.author | Du, Huifeng | - |
dc.contributor.author | Tang, Chengchun | - |
dc.contributor.author | Ji, Chang Yin | - |
dc.contributor.author | Quan, Baogang | - |
dc.contributor.author | Pan, Ruhao | - |
dc.contributor.author | Yang, Lechen | - |
dc.contributor.author | Li, Xinhao | - |
dc.contributor.author | Gu, Changzhi | - |
dc.contributor.author | Zhang, Xiangdong | - |
dc.contributor.author | Yao, Yugui | - |
dc.contributor.author | Li, Junjie | - |
dc.contributor.author | Fang, Nicholas X. | - |
dc.contributor.author | Li, Jiafang | - |
dc.date.accessioned | 2022-10-11T12:24:51Z | - |
dc.date.available | 2022-10-11T12:24:51Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Nature Communications, 2021, v. 12, n. 1, article no. 1299 | - |
dc.identifier.uri | http://hdl.handle.net/10722/318914 | - |
dc.description.abstract | Kirigami, with facile and automated fashion of three-dimensional (3D) transformations, offers an unconventional approach for realizing cutting-edge optical nano-electromechanical systems. Here, we demonstrate an on-chip and electromechanically reconfigurable nano-kirigami with optical functionalities. The nano-electromechanical system is built on an Au/SiO2/Si substrate and operated via attractive electrostatic forces between the top gold nanostructure and bottom silicon substrate. Large-range nano-kirigami like 3D deformations are clearly observed and reversibly engineered, with scalable pitch size down to 0.975 μm. Broadband nonresonant and narrowband resonant optical reconfigurations are achieved at visible and near-infrared wavelengths, respectively, with a high modulation contrast up to 494%. On-chip modulation of optical helicity is further demonstrated in submicron nano-kirigami at near-infrared wavelengths. Such small-size and high-contrast reconfigurable optical nano-kirigami provides advanced methodologies and platforms for versatile on-chip manipulation of light at nanoscale. | - |
dc.language | eng | - |
dc.relation.ispartof | Nature Communications | - |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.title | Electromechanically reconfigurable optical nano-kirigami | - |
dc.type | Article | - |
dc.description.nature | published_or_final_version | - |
dc.identifier.doi | 10.1038/s41467-021-21565-x | - |
dc.identifier.pmid | 33637725 | - |
dc.identifier.pmcid | PMC7910307 | - |
dc.identifier.scopus | eid_2-s2.0-85101776962 | - |
dc.identifier.volume | 12 | - |
dc.identifier.issue | 1 | - |
dc.identifier.spage | article no. 1299 | - |
dc.identifier.epage | article no. 1299 | - |
dc.identifier.eissn | 2041-1723 | - |
dc.identifier.isi | WOS:000624978300010 | - |