File Download

There are no files associated with this item.

Supplementary

Conference Paper: BGL: GPU-Efficient GNN Training by Optimizing Graph Data I/O and Preprocessing

TitleBGL: GPU-Efficient GNN Training by Optimizing Graph Data I/O and Preprocessing
Authors
Issue Date2023
Citation
the 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI) How to Cite?
Persistent Identifierhttp://hdl.handle.net/10722/320623

 

DC FieldValueLanguage
dc.contributor.authorLiu, T-
dc.contributor.authorCHEN, Y-
dc.contributor.authorLi, D-
dc.contributor.authorWu, C-
dc.contributor.authorZhu, Y-
dc.contributor.authorHe, J-
dc.contributor.authorPeng, Y-
dc.contributor.authorCheng, H-
dc.contributor.authorCheng, H-
dc.contributor.authorGuo, C-
dc.date.accessioned2022-10-21T07:56:48Z-
dc.date.available2022-10-21T07:56:48Z-
dc.date.issued2023-
dc.identifier.citationthe 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI)-
dc.identifier.urihttp://hdl.handle.net/10722/320623-
dc.languageeng-
dc.relation.ispartofthe 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI)-
dc.titleBGL: GPU-Efficient GNN Training by Optimizing Graph Data I/O and Preprocessing-
dc.typeConference_Paper-
dc.identifier.emailWu, C: cwu@cs.hku.hk-
dc.identifier.authorityWu, C=rp01397-
dc.identifier.hkuros340523-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats