File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Temperature and emissivity separation from ground-based MIR hyperspectral data

TitleTemperature and emissivity separation from ground-based MIR hyperspectral data
Authors
KeywordsBidirectional reflectance distribution function (BRDF)
hyperspectral
mid-infrared (MIR)
temperature and emissivity separation (TES)
Issue Date2011
Citation
IEEE Transactions on Geoscience and Remote Sensing, 2011, v. 49, n. 4, p. 1473-1484 How to Cite?
AbstractTemperature and emissivity separation (TES) algorithms designed to work with mid-infrared (MIR) hyperspectral data are extremely limited. Two TES algorithms originally designed for long-wave infrared hyperspectral data, specifically, the iterative spectrally smooth (ISS) algorithm and the stepwise refining algorithm, are extended into MIR and renamed the extended iterative spectrally smooth (EISS) and extended stepwise refining algorithms (ESR), respectively. Numerical experiments are first conducted to evaluate their feasibility. The results of the numerical experiments indicate that the accuracy of the ESR algorithm is higher than that of the EISS algorithm. Moreover, the ESR algorithm is more robust than the EISS algorithm under sunlit conditions. Their accuracy is then validated with in situ measurements. Finally, the emissivity root mean square errors (RMSEs) of the EISS and ESR algorithms are compared with the data derived with the ISS algorithm using in situ measurements. Results show that the average emissivity RMSEs of 0.03 in 2000-2200 cm-1 and of 0.03-0.30 in 2400-3000 cm-1 for nighttime, and 0.02 in 2000-2200 cm-1 and 0.03 in 2500-3000 cm -1 for daytime, can be obtained from ground-based MIR hyperspectral data using the ESR algorithm. © 2006 IEEE.
Persistent Identifierhttp://hdl.handle.net/10722/321438
ISSN
2023 Impact Factor: 7.5
2023 SCImago Journal Rankings: 2.403
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorCheng, Jie-
dc.contributor.authorLiang, Shunlin-
dc.contributor.authorLiu, Qinhuo-
dc.contributor.authorLi, Xiaowen-
dc.date.accessioned2022-11-03T02:18:55Z-
dc.date.available2022-11-03T02:18:55Z-
dc.date.issued2011-
dc.identifier.citationIEEE Transactions on Geoscience and Remote Sensing, 2011, v. 49, n. 4, p. 1473-1484-
dc.identifier.issn0196-2892-
dc.identifier.urihttp://hdl.handle.net/10722/321438-
dc.description.abstractTemperature and emissivity separation (TES) algorithms designed to work with mid-infrared (MIR) hyperspectral data are extremely limited. Two TES algorithms originally designed for long-wave infrared hyperspectral data, specifically, the iterative spectrally smooth (ISS) algorithm and the stepwise refining algorithm, are extended into MIR and renamed the extended iterative spectrally smooth (EISS) and extended stepwise refining algorithms (ESR), respectively. Numerical experiments are first conducted to evaluate their feasibility. The results of the numerical experiments indicate that the accuracy of the ESR algorithm is higher than that of the EISS algorithm. Moreover, the ESR algorithm is more robust than the EISS algorithm under sunlit conditions. Their accuracy is then validated with in situ measurements. Finally, the emissivity root mean square errors (RMSEs) of the EISS and ESR algorithms are compared with the data derived with the ISS algorithm using in situ measurements. Results show that the average emissivity RMSEs of 0.03 in 2000-2200 cm-1 and of 0.03-0.30 in 2400-3000 cm-1 for nighttime, and 0.02 in 2000-2200 cm-1 and 0.03 in 2500-3000 cm -1 for daytime, can be obtained from ground-based MIR hyperspectral data using the ESR algorithm. © 2006 IEEE.-
dc.languageeng-
dc.relation.ispartofIEEE Transactions on Geoscience and Remote Sensing-
dc.subjectBidirectional reflectance distribution function (BRDF)-
dc.subjecthyperspectral-
dc.subjectmid-infrared (MIR)-
dc.subjecttemperature and emissivity separation (TES)-
dc.titleTemperature and emissivity separation from ground-based MIR hyperspectral data-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1109/TGRS.2010.2076818-
dc.identifier.scopuseid_2-s2.0-79953194761-
dc.identifier.volume49-
dc.identifier.issue4-
dc.identifier.spage1473-
dc.identifier.epage1484-
dc.identifier.isiWOS:000288762900025-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats