File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1109/CVPR.2012.6247949
- Scopus: eid_2-s2.0-84866657390
- Find via
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Conference Paper: Batch mode Adaptive Multiple Instance Learning for computer vision tasks
Title | Batch mode Adaptive Multiple Instance Learning for computer vision tasks |
---|---|
Authors | |
Issue Date | 2012 |
Citation | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2012, p. 2368-2375 How to Cite? |
Abstract | Multiple Instance Learning (MIL) has been widely exploited in many computer vision tasks, such as image retrieval, object tracking and so on. To handle ambiguity of instance labels in positive bags, the training process of traditional MIL methods is usually computationally expensive, which limits the applications of MIL in more computer vision tasks. In this paper, we propose a novel batch mode framework, namely Batch mode Adaptive Multiple Instance Learning (BAMIL), to accelerate the instance-level MIL methods. Specifically, instead of using all training bags at once, we divide the training bags into several sets of bags (i.e., batches). At each time, we use one batch of training bags to train a new classifier which is adapted from the latest pre-learned classifier. Such batch mode framework significantly accelerates the traditional MIL methods for large scale applications and can be also used in dynamic environments such as object tracking. The experimental results show that our BAMIL is much faster than the recently developed MIL with constrained positive bags while achieves comparable performance for text-based web image retrieval. In dynamic settings, BAMIL also achieves the better overall performance for object tracking when compared with other online MIL methods. © 2012 IEEE. |
Persistent Identifier | http://hdl.handle.net/10722/321486 |
ISSN | 2023 SCImago Journal Rankings: 10.331 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Li, Wen | - |
dc.contributor.author | Duan, Lixin | - |
dc.contributor.author | Tsang, Ivor Wai Hung | - |
dc.contributor.author | Xu, Dong | - |
dc.date.accessioned | 2022-11-03T02:19:14Z | - |
dc.date.available | 2022-11-03T02:19:14Z | - |
dc.date.issued | 2012 | - |
dc.identifier.citation | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2012, p. 2368-2375 | - |
dc.identifier.issn | 1063-6919 | - |
dc.identifier.uri | http://hdl.handle.net/10722/321486 | - |
dc.description.abstract | Multiple Instance Learning (MIL) has been widely exploited in many computer vision tasks, such as image retrieval, object tracking and so on. To handle ambiguity of instance labels in positive bags, the training process of traditional MIL methods is usually computationally expensive, which limits the applications of MIL in more computer vision tasks. In this paper, we propose a novel batch mode framework, namely Batch mode Adaptive Multiple Instance Learning (BAMIL), to accelerate the instance-level MIL methods. Specifically, instead of using all training bags at once, we divide the training bags into several sets of bags (i.e., batches). At each time, we use one batch of training bags to train a new classifier which is adapted from the latest pre-learned classifier. Such batch mode framework significantly accelerates the traditional MIL methods for large scale applications and can be also used in dynamic environments such as object tracking. The experimental results show that our BAMIL is much faster than the recently developed MIL with constrained positive bags while achieves comparable performance for text-based web image retrieval. In dynamic settings, BAMIL also achieves the better overall performance for object tracking when compared with other online MIL methods. © 2012 IEEE. | - |
dc.language | eng | - |
dc.relation.ispartof | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition | - |
dc.title | Batch mode Adaptive Multiple Instance Learning for computer vision tasks | - |
dc.type | Conference_Paper | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1109/CVPR.2012.6247949 | - |
dc.identifier.scopus | eid_2-s2.0-84866657390 | - |
dc.identifier.spage | 2368 | - |
dc.identifier.epage | 2375 | - |