File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Estimating the optimal broadband emissivity spectral range for calculating surface longwave net radiation

TitleEstimating the optimal broadband emissivity spectral range for calculating surface longwave net radiation
Authors
KeywordsBroadband emissivity (BBE)
land surface model
refractive index
remote sensing
surface radiation budget
Issue Date2013
Citation
IEEE Geoscience and Remote Sensing Letters, 2013, v. 10, n. 2, p. 401-405 How to Cite?
AbstractSurface broadband emissivity (BBE) in the thermal infrared spectrum is essential for calculating the surface total longwave net radiation in land surface models. However, almost all narrowband emissivities estimated from satellite observations are in the 3-14-μm spectral region. Previous studies converted these narrowband emissivities to BBE over different spectral ranges, such as 3-14, 8-12, 8-13.5, and 8-14 μm. Errors in the calculated total longwave net radiation must be quantified systematically using these BBEs. Moreover, the best spectral range for longwave net radiation must be determined. The key to addressing these issues is the use of the realistic emissivity spectra. By applying modern radiative transfer tools, we derived the emissivity spectra of water, snow, and minerals at 1-200 μm. Using these emissivity spectra, we first investigated the accuracy of replacing all-wavelength surface longwave net radiation with the surface longwave net radiation in the 3-100-, 4-100-, 2.5-100-, 2.5-200-, and 1-200-μm spectral domains. Surface longwave net radiation at 2.5-200 μm was found to be optimal, with a bias and root mean square (rms) of less than 0.928 and 0.993 W/m2, respectively. We calculated the errors when estimating surface longwave net radiation at 2.5-200 μm with BBE in different spectral ranges. The results show that BBE at 8-13.5 μm had the lowest error and the corresponding bias and rms were less than 0.002 and 1.453 W/m2, respectively. When the 2.5-200-μm surface longwave net radiation calculated by the 8-13.5-μm BBE was used to replace the all-wavelength surface longwave net radiation, the average bias and rms were 1.473 and 2.746 W/m2, respectively. Using the most representative emissivity spectra, we derived the conversion formulas for calculating BBE at 8-13.5 μm from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Moderate Resolution Imaging Spectrometer (MODIS) narrowband emissivity products. © 2012 IEEE.
Persistent Identifierhttp://hdl.handle.net/10722/321496
ISSN
2023 Impact Factor: 4.0
2023 SCImago Journal Rankings: 1.248
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorCheng, Jie-
dc.contributor.authorLiang, Shunlin-
dc.contributor.authorYao, Yunjun-
dc.contributor.authorZhang, Xiaotong-
dc.date.accessioned2022-11-03T02:19:18Z-
dc.date.available2022-11-03T02:19:18Z-
dc.date.issued2013-
dc.identifier.citationIEEE Geoscience and Remote Sensing Letters, 2013, v. 10, n. 2, p. 401-405-
dc.identifier.issn1545-598X-
dc.identifier.urihttp://hdl.handle.net/10722/321496-
dc.description.abstractSurface broadband emissivity (BBE) in the thermal infrared spectrum is essential for calculating the surface total longwave net radiation in land surface models. However, almost all narrowband emissivities estimated from satellite observations are in the 3-14-μm spectral region. Previous studies converted these narrowband emissivities to BBE over different spectral ranges, such as 3-14, 8-12, 8-13.5, and 8-14 μm. Errors in the calculated total longwave net radiation must be quantified systematically using these BBEs. Moreover, the best spectral range for longwave net radiation must be determined. The key to addressing these issues is the use of the realistic emissivity spectra. By applying modern radiative transfer tools, we derived the emissivity spectra of water, snow, and minerals at 1-200 μm. Using these emissivity spectra, we first investigated the accuracy of replacing all-wavelength surface longwave net radiation with the surface longwave net radiation in the 3-100-, 4-100-, 2.5-100-, 2.5-200-, and 1-200-μm spectral domains. Surface longwave net radiation at 2.5-200 μm was found to be optimal, with a bias and root mean square (rms) of less than 0.928 and 0.993 W/m2, respectively. We calculated the errors when estimating surface longwave net radiation at 2.5-200 μm with BBE in different spectral ranges. The results show that BBE at 8-13.5 μm had the lowest error and the corresponding bias and rms were less than 0.002 and 1.453 W/m2, respectively. When the 2.5-200-μm surface longwave net radiation calculated by the 8-13.5-μm BBE was used to replace the all-wavelength surface longwave net radiation, the average bias and rms were 1.473 and 2.746 W/m2, respectively. Using the most representative emissivity spectra, we derived the conversion formulas for calculating BBE at 8-13.5 μm from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Moderate Resolution Imaging Spectrometer (MODIS) narrowband emissivity products. © 2012 IEEE.-
dc.languageeng-
dc.relation.ispartofIEEE Geoscience and Remote Sensing Letters-
dc.subjectBroadband emissivity (BBE)-
dc.subjectland surface model-
dc.subjectrefractive index-
dc.subjectremote sensing-
dc.subjectsurface radiation budget-
dc.titleEstimating the optimal broadband emissivity spectral range for calculating surface longwave net radiation-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1109/LGRS.2012.2206367-
dc.identifier.scopuseid_2-s2.0-84869499838-
dc.identifier.volume10-
dc.identifier.issue2-
dc.identifier.spage401-
dc.identifier.epage405-
dc.identifier.isiWOS:000310901600040-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats