File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1109/ICDM.2012.158
- Scopus: eid_2-s2.0-84874045143
- WOS: WOS:000316383800045
- Find via
Supplementary
- Citations:
- Appears in Collections:
Conference Paper: Time constrained influence maximization in social networks
Title | Time constrained influence maximization in social networks |
---|---|
Authors | |
Issue Date | 2012 |
Citation | Proceedings - IEEE International Conference on Data Mining, ICDM, 2012, p. 439-448 How to Cite? |
Abstract | Influence maximization is a fundamental research problem in social networks. Viral marketing, one of its applications, is to get a small number of users to adopt a product, which subsequently triggers a large cascade of further adoptions by utilizing "Word-of-Mouth" effect in social networks. Influence maximization problem has been extensively studied recently. However, none of the previous work considers the time constraint in the influence maximization problem. In this paper, we propose the time constrained influence maximization problem. We show that the problem is NP-hard, and prove the monotonicity and submodularity of the time constrained influence spread function. Based on this, we develop a greedy algorithm with performance guarantees. To improve the algorithm scalability, we propose two Influence Spreading Path based methods. Extensive experiments conducted over four public available datasets demonstrate the efficiency and effectiveness of the Influence Spreading Path based methods. © 2012 IEEE. |
Persistent Identifier | http://hdl.handle.net/10722/321505 |
ISSN | 2020 SCImago Journal Rankings: 0.545 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Liu, Bo | - |
dc.contributor.author | Cong, Gao | - |
dc.contributor.author | Xu, Dong | - |
dc.contributor.author | Zeng, Yifeng | - |
dc.date.accessioned | 2022-11-03T02:19:21Z | - |
dc.date.available | 2022-11-03T02:19:21Z | - |
dc.date.issued | 2012 | - |
dc.identifier.citation | Proceedings - IEEE International Conference on Data Mining, ICDM, 2012, p. 439-448 | - |
dc.identifier.issn | 1550-4786 | - |
dc.identifier.uri | http://hdl.handle.net/10722/321505 | - |
dc.description.abstract | Influence maximization is a fundamental research problem in social networks. Viral marketing, one of its applications, is to get a small number of users to adopt a product, which subsequently triggers a large cascade of further adoptions by utilizing "Word-of-Mouth" effect in social networks. Influence maximization problem has been extensively studied recently. However, none of the previous work considers the time constraint in the influence maximization problem. In this paper, we propose the time constrained influence maximization problem. We show that the problem is NP-hard, and prove the monotonicity and submodularity of the time constrained influence spread function. Based on this, we develop a greedy algorithm with performance guarantees. To improve the algorithm scalability, we propose two Influence Spreading Path based methods. Extensive experiments conducted over four public available datasets demonstrate the efficiency and effectiveness of the Influence Spreading Path based methods. © 2012 IEEE. | - |
dc.language | eng | - |
dc.relation.ispartof | Proceedings - IEEE International Conference on Data Mining, ICDM | - |
dc.title | Time constrained influence maximization in social networks | - |
dc.type | Conference_Paper | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1109/ICDM.2012.158 | - |
dc.identifier.scopus | eid_2-s2.0-84874045143 | - |
dc.identifier.spage | 439 | - |
dc.identifier.epage | 448 | - |
dc.identifier.isi | WOS:000316383800045 | - |