File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Soft margin multiple kernel learning

TitleSoft margin multiple kernel learning
Authors
KeywordsMultiple kernel learning
Support vector machines.
Issue Date2013
Citation
IEEE Transactions on Neural Networks and Learning Systems, 2013, v. 24, n. 5, p. 749-761 How to Cite?
AbstractMultiple kernel learning (MKL) has been proposed for kernel methods by learning the optimal kernel from a set of predefined base kernels. However, the traditional L1MKL method often achieves worse results than the simplest method using the average of base kernels (i.e., average kernel) in some practical applications. In order to improve the effectiveness of MKL, this paper presents a novel soft margin perspective for MKL. Specifically, we introduce an additional slack variable called kernel slack variable to each quadratic constraint of MKL, which corresponds to one support vector machine model using a single base kernel. We first show that L1MKL can be deemed as hard margin MKL, and then we propose a novel soft margin framework for MKL. Three commonly used loss functions, including the hinge loss, the square hinge loss, and the square loss, can be readily incorporated into this framework, leading to the new soft margin MKL objective functions. Many existing MKL methods can be shown as special cases under our soft margin framework. For example, the hinge loss soft margin MKL leads to a new box constraint for kernel combination coefficients. Using different hyper-parameter values for this formulation, we can inherently bridge the method using average kernel, L 1MKL, and the hinge loss soft margin MKL. The square hinge loss soft margin MKL unifies the family of elastic net constraint/regularizer based approaches; and the square loss soft margin MKL incorporates L2MKL naturally. Moreover, we also develop efficient algorithms for solving both the hinge loss and square hinge loss soft margin MKL. Comprehensive experimental studies for various MKL algorithms on several benchmark data sets and two real world applications, including video action recognition and event recognition demonstrate that our proposed algorithms can efficiently achieve an effective yet sparse solution for MKL. © 2013 IEEE.
Persistent Identifierhttp://hdl.handle.net/10722/321527
ISSN
2023 Impact Factor: 10.2
2023 SCImago Journal Rankings: 4.170
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorXu, Xinxing-
dc.contributor.authorTsang, Ivor W.-
dc.contributor.authorXu, Dong-
dc.date.accessioned2022-11-03T02:19:32Z-
dc.date.available2022-11-03T02:19:32Z-
dc.date.issued2013-
dc.identifier.citationIEEE Transactions on Neural Networks and Learning Systems, 2013, v. 24, n. 5, p. 749-761-
dc.identifier.issn2162-237X-
dc.identifier.urihttp://hdl.handle.net/10722/321527-
dc.description.abstractMultiple kernel learning (MKL) has been proposed for kernel methods by learning the optimal kernel from a set of predefined base kernels. However, the traditional L1MKL method often achieves worse results than the simplest method using the average of base kernels (i.e., average kernel) in some practical applications. In order to improve the effectiveness of MKL, this paper presents a novel soft margin perspective for MKL. Specifically, we introduce an additional slack variable called kernel slack variable to each quadratic constraint of MKL, which corresponds to one support vector machine model using a single base kernel. We first show that L1MKL can be deemed as hard margin MKL, and then we propose a novel soft margin framework for MKL. Three commonly used loss functions, including the hinge loss, the square hinge loss, and the square loss, can be readily incorporated into this framework, leading to the new soft margin MKL objective functions. Many existing MKL methods can be shown as special cases under our soft margin framework. For example, the hinge loss soft margin MKL leads to a new box constraint for kernel combination coefficients. Using different hyper-parameter values for this formulation, we can inherently bridge the method using average kernel, L 1MKL, and the hinge loss soft margin MKL. The square hinge loss soft margin MKL unifies the family of elastic net constraint/regularizer based approaches; and the square loss soft margin MKL incorporates L2MKL naturally. Moreover, we also develop efficient algorithms for solving both the hinge loss and square hinge loss soft margin MKL. Comprehensive experimental studies for various MKL algorithms on several benchmark data sets and two real world applications, including video action recognition and event recognition demonstrate that our proposed algorithms can efficiently achieve an effective yet sparse solution for MKL. © 2013 IEEE.-
dc.languageeng-
dc.relation.ispartofIEEE Transactions on Neural Networks and Learning Systems-
dc.subjectMultiple kernel learning-
dc.subjectSupport vector machines.-
dc.titleSoft margin multiple kernel learning-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1109/TNNLS.2012.2237183-
dc.identifier.scopuseid_2-s2.0-84884931575-
dc.identifier.volume24-
dc.identifier.issue5-
dc.identifier.spage749-
dc.identifier.epage761-
dc.identifier.eissn2162-2388-
dc.identifier.isiWOS:000316494700006-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats