File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Data assimilation methods for land surface variable estimation

TitleData assimilation methods for land surface variable estimation
Authors
Issue Date2008
PublisherSpringer
Citation
9th International Symposium on Physical Measurements and Signatures in Remote Sensing, 1 October 2005. In Liang, S (Ed.), Advances in Land Remote Sensing: System, Modeling, Inversion and Application, p. 313-339. Dordrecht: Springer, 2008 How to Cite?
AbstractEstimating land surface variables from remote sensing data is an ill-posed problem. Integration of observations from multiple satellite sensors with different spectral, spatial, temporal and angular signatures is now an important research frontier. Data assimilation (DA), integrating not only remotely sensed data products, but also other measurements and land dynamic models, is an advanced set of techniques for innovative parameter estimation. After a brief introduction, we describe the basic principles of DA, and then provide in-depth discussions of some relevant issues while using DA. The latest applications of DA for estimation of soil moisture, energy balance, carbon cycle and agricultural productivity are summarized. © Springer Science + Business Media B.V., 2008.
Persistent Identifierhttp://hdl.handle.net/10722/321582
ISBN

 

DC FieldValueLanguage
dc.contributor.authorLiang, Shunlin-
dc.contributor.authorQin, Jun-
dc.date.accessioned2022-11-03T02:20:01Z-
dc.date.available2022-11-03T02:20:01Z-
dc.date.issued2008-
dc.identifier.citation9th International Symposium on Physical Measurements and Signatures in Remote Sensing, 1 October 2005. In Liang, S (Ed.), Advances in Land Remote Sensing: System, Modeling, Inversion and Application, p. 313-339. Dordrecht: Springer, 2008-
dc.identifier.isbn9781402064494-
dc.identifier.urihttp://hdl.handle.net/10722/321582-
dc.description.abstractEstimating land surface variables from remote sensing data is an ill-posed problem. Integration of observations from multiple satellite sensors with different spectral, spatial, temporal and angular signatures is now an important research frontier. Data assimilation (DA), integrating not only remotely sensed data products, but also other measurements and land dynamic models, is an advanced set of techniques for innovative parameter estimation. After a brief introduction, we describe the basic principles of DA, and then provide in-depth discussions of some relevant issues while using DA. The latest applications of DA for estimation of soil moisture, energy balance, carbon cycle and agricultural productivity are summarized. © Springer Science + Business Media B.V., 2008.-
dc.languageeng-
dc.publisherSpringer-
dc.relation.ispartofAdvances in Land Remote Sensing: System, Modeling, Inversion and Application-
dc.titleData assimilation methods for land surface variable estimation-
dc.typeConference_Paper-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1007/978-1-4020-6450-0_12-
dc.identifier.scopuseid_2-s2.0-84900063330-
dc.identifier.spage313-
dc.identifier.epage339-
dc.publisher.placeDordrecht-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats