File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1142/S0219467807002817
- Scopus: eid_2-s2.0-84900268852
- WOS: WOS:000216792700010
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Face recognition - a generalized marginal fisher analysis approach
Title | Face recognition - a generalized marginal fisher analysis approach |
---|---|
Authors | |
Keywords | Biometrics face recognition |
Issue Date | 2007 |
Citation | International Journal of Image and Graphics, 2007, v. 7, n. 3, p. 583-591 How to Cite? |
Abstract | In this paper, we propose a new supervised learning algorithm, which is named the Generalized Marginal Fisher Analysis (GMFA), to utilize the advantages of the Marginal Fisher Analysis (MFA) and the Generalized Singular Value Decomposition (GSVD) techniques for face recognition. The experimental results on several standard face databases demonstrate that GMFA outperforms LDA/Fisherface, LDA/GSVD and MFA. |
Persistent Identifier | http://hdl.handle.net/10722/321585 |
ISSN | 2023 Impact Factor: 0.8 2023 SCImago Journal Rankings: 0.247 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Xu, Dong | - |
dc.contributor.author | Tao, Dacheng | - |
dc.contributor.author | Li, Xuelong | - |
dc.contributor.author | Yan, Shuicheng | - |
dc.date.accessioned | 2022-11-03T02:20:02Z | - |
dc.date.available | 2022-11-03T02:20:02Z | - |
dc.date.issued | 2007 | - |
dc.identifier.citation | International Journal of Image and Graphics, 2007, v. 7, n. 3, p. 583-591 | - |
dc.identifier.issn | 0219-4678 | - |
dc.identifier.uri | http://hdl.handle.net/10722/321585 | - |
dc.description.abstract | In this paper, we propose a new supervised learning algorithm, which is named the Generalized Marginal Fisher Analysis (GMFA), to utilize the advantages of the Marginal Fisher Analysis (MFA) and the Generalized Singular Value Decomposition (GSVD) techniques for face recognition. The experimental results on several standard face databases demonstrate that GMFA outperforms LDA/Fisherface, LDA/GSVD and MFA. | - |
dc.language | eng | - |
dc.relation.ispartof | International Journal of Image and Graphics | - |
dc.subject | Biometrics | - |
dc.subject | face recognition | - |
dc.title | Face recognition - a generalized marginal fisher analysis approach | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1142/S0219467807002817 | - |
dc.identifier.scopus | eid_2-s2.0-84900268852 | - |
dc.identifier.volume | 7 | - |
dc.identifier.issue | 3 | - |
dc.identifier.spage | 583 | - |
dc.identifier.epage | 591 | - |
dc.identifier.isi | WOS:000216792700010 | - |