File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1109/CVPR.2015.7299072
- Scopus: eid_2-s2.0-84959217613
- Find via
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Conference Paper: Object-based RGBD image co-segmentation with mutex constraint
Title | Object-based RGBD image co-segmentation with mutex constraint |
---|---|
Authors | |
Issue Date | 2015 |
Citation | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2015, v. 07-12-June-2015, p. 4428-4436 How to Cite? |
Abstract | We present an object-based co-segmentation method that takes advantage of depth data and is able to correctly handle noisy images in which the common foreground object is missing. With RGBD images, our method utilizes the depth channel to enhance identification of similar foreground objects via a proposed RGBD co-saliency map, as well as to improve detection of object-like regions and provide depth-based local features for region comparison. To accurately deal with noisy images where the common object appears more than or less than once, we formulate co-segmentation in a fully-connected graph structure together with mutual exclusion (mutex) constraints that prevent improper solutions. Experiments show that this object-based RGBD co-segmentation with mutex constraints outperforms related techniques on an RGBD co-segmentation dataset, while effectively processing noisy images. Moreover, we show that this method also provides performance comparable to state-of-the-art RGB co-segmentation techniques on regular RGB images with depth maps estimated from them. |
Persistent Identifier | http://hdl.handle.net/10722/321660 |
ISSN | 2023 SCImago Journal Rankings: 10.331 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Fu, Huazhu | - |
dc.contributor.author | Xu, Dong | - |
dc.contributor.author | Lin, Stephen | - |
dc.contributor.author | Liu, Jiang | - |
dc.date.accessioned | 2022-11-03T02:20:34Z | - |
dc.date.available | 2022-11-03T02:20:34Z | - |
dc.date.issued | 2015 | - |
dc.identifier.citation | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2015, v. 07-12-June-2015, p. 4428-4436 | - |
dc.identifier.issn | 1063-6919 | - |
dc.identifier.uri | http://hdl.handle.net/10722/321660 | - |
dc.description.abstract | We present an object-based co-segmentation method that takes advantage of depth data and is able to correctly handle noisy images in which the common foreground object is missing. With RGBD images, our method utilizes the depth channel to enhance identification of similar foreground objects via a proposed RGBD co-saliency map, as well as to improve detection of object-like regions and provide depth-based local features for region comparison. To accurately deal with noisy images where the common object appears more than or less than once, we formulate co-segmentation in a fully-connected graph structure together with mutual exclusion (mutex) constraints that prevent improper solutions. Experiments show that this object-based RGBD co-segmentation with mutex constraints outperforms related techniques on an RGBD co-segmentation dataset, while effectively processing noisy images. Moreover, we show that this method also provides performance comparable to state-of-the-art RGB co-segmentation techniques on regular RGB images with depth maps estimated from them. | - |
dc.language | eng | - |
dc.relation.ispartof | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition | - |
dc.title | Object-based RGBD image co-segmentation with mutex constraint | - |
dc.type | Conference_Paper | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1109/CVPR.2015.7299072 | - |
dc.identifier.scopus | eid_2-s2.0-84959217613 | - |
dc.identifier.volume | 07-12-June-2015 | - |
dc.identifier.spage | 4428 | - |
dc.identifier.epage | 4436 | - |