File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1109/TMM.2016.2602938
- Scopus: eid_2-s2.0-84999792442
- WOS: WOS:000388920200015
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Image Classification by Cross-Media Active Learning with Privileged Information
Title | Image Classification by Cross-Media Active Learning with Privileged Information |
---|---|
Authors | |
Keywords | Active learning cross-media analysis image classification Image-Text joint modeling |
Issue Date | 2016 |
Citation | IEEE Transactions on Multimedia, 2016, v. 18, n. 12, p. 2494-2502 How to Cite? |
Abstract | In this paper, we propose a novel cross-media active learning algorithm to reduce the effort on labeling images for training. The Internet images are often associated with rich textual descriptions. Even though such textual information is not available in test images, it is still useful for learning robust classifiers. In light of this, we apply the recently proposed supervised learning paradigm, learning using privileged information, to the active learning task. Specifically, we train classifiers on both visual features and privileged information, and measure the uncertainty of unlabeled data by exploiting the learned classifiers and slacking function. Then, we propose to select unlabeled samples by jointly measuring the cross-media uncertainty and the visual diversity. Our method automatically learns the optimal tradeoff parameter between the two measurements, which in turn makes our algorithms particularly suitable for real-world applications. Extensive experiments demonstrate the effectiveness of our approach. |
Persistent Identifier | http://hdl.handle.net/10722/321710 |
ISSN | 2023 Impact Factor: 8.4 2023 SCImago Journal Rankings: 2.260 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yan, Yan | - |
dc.contributor.author | Nie, Feiping | - |
dc.contributor.author | Li, Wen | - |
dc.contributor.author | Gao, Chenqiang | - |
dc.contributor.author | Yang, Yi | - |
dc.contributor.author | Xu, Dong | - |
dc.date.accessioned | 2022-11-03T02:20:56Z | - |
dc.date.available | 2022-11-03T02:20:56Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | IEEE Transactions on Multimedia, 2016, v. 18, n. 12, p. 2494-2502 | - |
dc.identifier.issn | 1520-9210 | - |
dc.identifier.uri | http://hdl.handle.net/10722/321710 | - |
dc.description.abstract | In this paper, we propose a novel cross-media active learning algorithm to reduce the effort on labeling images for training. The Internet images are often associated with rich textual descriptions. Even though such textual information is not available in test images, it is still useful for learning robust classifiers. In light of this, we apply the recently proposed supervised learning paradigm, learning using privileged information, to the active learning task. Specifically, we train classifiers on both visual features and privileged information, and measure the uncertainty of unlabeled data by exploiting the learned classifiers and slacking function. Then, we propose to select unlabeled samples by jointly measuring the cross-media uncertainty and the visual diversity. Our method automatically learns the optimal tradeoff parameter between the two measurements, which in turn makes our algorithms particularly suitable for real-world applications. Extensive experiments demonstrate the effectiveness of our approach. | - |
dc.language | eng | - |
dc.relation.ispartof | IEEE Transactions on Multimedia | - |
dc.subject | Active learning | - |
dc.subject | cross-media analysis | - |
dc.subject | image classification | - |
dc.subject | Image-Text joint modeling | - |
dc.title | Image Classification by Cross-Media Active Learning with Privileged Information | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1109/TMM.2016.2602938 | - |
dc.identifier.scopus | eid_2-s2.0-84999792442 | - |
dc.identifier.volume | 18 | - |
dc.identifier.issue | 12 | - |
dc.identifier.spage | 2494 | - |
dc.identifier.epage | 2502 | - |
dc.identifier.isi | WOS:000388920200015 | - |