File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1109/WACV48630.2021.00067
- Scopus: eid_2-s2.0-85112694462
- WOS: WOS:000692171000063
Supplementary
- Citations:
- Appears in Collections:
Conference Paper: IncreACO: Incrementally learned automatic check-out with photorealistic exemplar augmentation
Title | IncreACO: Incrementally learned automatic check-out with photorealistic exemplar augmentation |
---|---|
Authors | |
Issue Date | 2021 |
Citation | Proceedings - 2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021, 2021, p. 626-634 How to Cite? |
Abstract | Automatic check-out (ACO) emerges as an integral component in recent self-service retailing stores, which aims at automatically detecting and counting the randomly placed products upon a check-out platform. Existing data-driven counting works still have difficulties in generalizing to real-world retail product counting scenarios, since (1) real check-out images are hard to collect or cover all products and their possible layouts, (2) rapid updating of the product list leads to frequent and tedious re-training of the counting models. To overcome these obstacles, we contribute a practical automatic check-out framework tailored to real-world retail product counting scenarios, consisting of a photorealistic exemplar augmentation to generate physically reliable and photorealistic check-out images from canonical exemplars scanned for each product and an incremental learning strategy to match the updating nature of the ACO system with much fewer training effort. Through comprehensive studies, we show that the proposed IncreACO serves as an effective framework on the recent Retail Product Checkout (RPC) dataset, where the proposed photorealistic exemplar augmentation remarkably improves the counting performance against the state-of-the-art methods (77.15% v.s. 72.83% in counting accuracy), whilst the proposed incremental learning framework consistently extends the counting performance to new categories. |
Persistent Identifier | http://hdl.handle.net/10722/321958 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yang, Yandan | - |
dc.contributor.author | Sheng, Lu | - |
dc.contributor.author | Jiang, Xiaolong | - |
dc.contributor.author | Wang, Haochen | - |
dc.contributor.author | Xu, Dong | - |
dc.contributor.author | Cao, Xianbin | - |
dc.date.accessioned | 2022-11-03T02:22:38Z | - |
dc.date.available | 2022-11-03T02:22:38Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Proceedings - 2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021, 2021, p. 626-634 | - |
dc.identifier.uri | http://hdl.handle.net/10722/321958 | - |
dc.description.abstract | Automatic check-out (ACO) emerges as an integral component in recent self-service retailing stores, which aims at automatically detecting and counting the randomly placed products upon a check-out platform. Existing data-driven counting works still have difficulties in generalizing to real-world retail product counting scenarios, since (1) real check-out images are hard to collect or cover all products and their possible layouts, (2) rapid updating of the product list leads to frequent and tedious re-training of the counting models. To overcome these obstacles, we contribute a practical automatic check-out framework tailored to real-world retail product counting scenarios, consisting of a photorealistic exemplar augmentation to generate physically reliable and photorealistic check-out images from canonical exemplars scanned for each product and an incremental learning strategy to match the updating nature of the ACO system with much fewer training effort. Through comprehensive studies, we show that the proposed IncreACO serves as an effective framework on the recent Retail Product Checkout (RPC) dataset, where the proposed photorealistic exemplar augmentation remarkably improves the counting performance against the state-of-the-art methods (77.15% v.s. 72.83% in counting accuracy), whilst the proposed incremental learning framework consistently extends the counting performance to new categories. | - |
dc.language | eng | - |
dc.relation.ispartof | Proceedings - 2021 IEEE Winter Conference on Applications of Computer Vision, WACV 2021 | - |
dc.title | IncreACO: Incrementally learned automatic check-out with photorealistic exemplar augmentation | - |
dc.type | Conference_Paper | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1109/WACV48630.2021.00067 | - |
dc.identifier.scopus | eid_2-s2.0-85112694462 | - |
dc.identifier.spage | 626 | - |
dc.identifier.epage | 634 | - |
dc.identifier.isi | WOS:000692171000063 | - |