File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1109/TPAMI.2018.2877660
- Scopus: eid_2-s2.0-85055717262
- PMID: 30369436
- WOS: WOS:000502294300007
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Generalized Latent Multi-View Subspace Clustering
Title | Generalized Latent Multi-View Subspace Clustering |
---|---|
Authors | |
Keywords | latent representation Multi-view clustering neural networks subspace clustering |
Issue Date | 2020 |
Citation | IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, v. 42, n. 1, p. 86-99 How to Cite? |
Abstract | Subspace clustering is an effective method that has been successfully applied to many applications. Here, we propose a novel subspace clustering model for multi-view data using a latent representation termed Latent Multi-View Subspace Clustering (LMSC). Unlike most existing single-view subspace clustering methods, which directly reconstruct data points using original features, our method explores underlying complementary information from multiple views and simultaneously seeks the underlying latent representation. Using the complementarity of multiple views, the latent representation depicts data more comprehensively than each individual view, accordingly making subspace representation more accurate and robust. We proposed two LMSC formulations: linear LMSC (lLMSC), based on linear correlations between latent representation and each view, and generalized LMSC (gLMSC), based on neural networks to handle general relationships. The proposed method can be efficiently optimized under the Augmented Lagrangian Multiplier with Alternating Direction Minimization (ALM-ADM) framework. Extensive experiments on diverse datasets demonstrate the effectiveness of the proposed method. |
Persistent Identifier | http://hdl.handle.net/10722/322018 |
ISSN | 2023 Impact Factor: 20.8 2023 SCImago Journal Rankings: 6.158 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhang, Changqing | - |
dc.contributor.author | Fu, Huazhu | - |
dc.contributor.author | Hu, Qinghua | - |
dc.contributor.author | Cao, Xiaochun | - |
dc.contributor.author | Xie, Yuan | - |
dc.contributor.author | Tao, Dacheng | - |
dc.contributor.author | Xu, Dong | - |
dc.date.accessioned | 2022-11-03T02:23:02Z | - |
dc.date.available | 2022-11-03T02:23:02Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, v. 42, n. 1, p. 86-99 | - |
dc.identifier.issn | 0162-8828 | - |
dc.identifier.uri | http://hdl.handle.net/10722/322018 | - |
dc.description.abstract | Subspace clustering is an effective method that has been successfully applied to many applications. Here, we propose a novel subspace clustering model for multi-view data using a latent representation termed Latent Multi-View Subspace Clustering (LMSC). Unlike most existing single-view subspace clustering methods, which directly reconstruct data points using original features, our method explores underlying complementary information from multiple views and simultaneously seeks the underlying latent representation. Using the complementarity of multiple views, the latent representation depicts data more comprehensively than each individual view, accordingly making subspace representation more accurate and robust. We proposed two LMSC formulations: linear LMSC (lLMSC), based on linear correlations between latent representation and each view, and generalized LMSC (gLMSC), based on neural networks to handle general relationships. The proposed method can be efficiently optimized under the Augmented Lagrangian Multiplier with Alternating Direction Minimization (ALM-ADM) framework. Extensive experiments on diverse datasets demonstrate the effectiveness of the proposed method. | - |
dc.language | eng | - |
dc.relation.ispartof | IEEE Transactions on Pattern Analysis and Machine Intelligence | - |
dc.subject | latent representation | - |
dc.subject | Multi-view clustering | - |
dc.subject | neural networks | - |
dc.subject | subspace clustering | - |
dc.title | Generalized Latent Multi-View Subspace Clustering | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1109/TPAMI.2018.2877660 | - |
dc.identifier.pmid | 30369436 | - |
dc.identifier.scopus | eid_2-s2.0-85055717262 | - |
dc.identifier.volume | 42 | - |
dc.identifier.issue | 1 | - |
dc.identifier.spage | 86 | - |
dc.identifier.epage | 99 | - |
dc.identifier.eissn | 1939-3539 | - |
dc.identifier.isi | WOS:000502294300007 | - |