File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1109/TIP.2017.2651369
- Scopus: eid_2-s2.0-85015164328
- PMID: 28092539
- WOS: WOS:000395837700028
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Object-Based Multiple Foreground Segmentation in RGBD Video
Title | Object-Based Multiple Foreground Segmentation in RGBD Video |
---|---|
Authors | |
Keywords | multiple object segmentation RGBD segmentation RGBD video saliency Video segmentation |
Issue Date | 2017 |
Citation | IEEE Transactions on Image Processing, 2017, v. 26, n. 3, p. 1418-1427 How to Cite? |
Abstract | We present an RGB and Depth (RGBD) video segmentation method that takes advantage of depth data and can extract multiple foregrounds in the scene. This video segmentation is addressed as an object proposal selection problem formulated in a fully-connected graph, where a flexible number of foregrounds may be chosen. In our graph, each node represents a proposal, and the edges model intra-frame and inter-frame constraints on the solution. The proposals are selected based on an RGBD video saliency map in which depth-based features are utilized to enhance the identification of foregrounds. Experiments show that the proposed multiple foreground segmentation method outperforms related techniques, and the depth cue serves as a helpful complement to RGB features. Moreover, our method provides performance comparable to the state-of-The-Art RGB video segmentation techniques on regular RGB videos with estimated depth maps. |
Persistent Identifier | http://hdl.handle.net/10722/322043 |
ISSN | 2023 Impact Factor: 10.8 2023 SCImago Journal Rankings: 3.556 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Fu, Huazhu | - |
dc.contributor.author | Xu, Dong | - |
dc.contributor.author | Lin, Stephen | - |
dc.date.accessioned | 2022-11-03T02:23:13Z | - |
dc.date.available | 2022-11-03T02:23:13Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | IEEE Transactions on Image Processing, 2017, v. 26, n. 3, p. 1418-1427 | - |
dc.identifier.issn | 1057-7149 | - |
dc.identifier.uri | http://hdl.handle.net/10722/322043 | - |
dc.description.abstract | We present an RGB and Depth (RGBD) video segmentation method that takes advantage of depth data and can extract multiple foregrounds in the scene. This video segmentation is addressed as an object proposal selection problem formulated in a fully-connected graph, where a flexible number of foregrounds may be chosen. In our graph, each node represents a proposal, and the edges model intra-frame and inter-frame constraints on the solution. The proposals are selected based on an RGBD video saliency map in which depth-based features are utilized to enhance the identification of foregrounds. Experiments show that the proposed multiple foreground segmentation method outperforms related techniques, and the depth cue serves as a helpful complement to RGB features. Moreover, our method provides performance comparable to the state-of-The-Art RGB video segmentation techniques on regular RGB videos with estimated depth maps. | - |
dc.language | eng | - |
dc.relation.ispartof | IEEE Transactions on Image Processing | - |
dc.subject | multiple object segmentation | - |
dc.subject | RGBD segmentation | - |
dc.subject | RGBD video saliency | - |
dc.subject | Video segmentation | - |
dc.title | Object-Based Multiple Foreground Segmentation in RGBD Video | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1109/TIP.2017.2651369 | - |
dc.identifier.pmid | 28092539 | - |
dc.identifier.scopus | eid_2-s2.0-85015164328 | - |
dc.identifier.volume | 26 | - |
dc.identifier.issue | 3 | - |
dc.identifier.spage | 1418 | - |
dc.identifier.epage | 1427 | - |
dc.identifier.isi | WOS:000395837700028 | - |