File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1109/TGRS.2022.3149762
- Scopus: eid_2-s2.0-85124739493
- WOS: WOS:000772472400025
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Landsat Snow-Free Surface Albedo Estimation over Sloping Terrain: Algorithm Development and Evaluation
Title | Landsat Snow-Free Surface Albedo Estimation over Sloping Terrain: Algorithm Development and Evaluation |
---|---|
Authors | |
Keywords | Artificial neural network (ANN) direct estimation algorithm discrete anisotropic radiative transfer (DART) Landsat sloping terrain surface albedo |
Issue Date | 2022 |
Citation | IEEE Transactions on Geoscience and Remote Sensing, 2022, v. 60, article no. 4408914 How to Cite? |
Abstract | Surface albedo plays a key role in global climate modeling as a factor controlling the energy budget. Satellite observations were utilized to estimate surface albedo at global and regional scales with good precision over flat areas. However, because topography greatly complicates radiative transfer (RT) processes, estimating the albedo of rugged terrain with satellite data remains a challenge. In addition, albedo definitions over sloping terrain differ from that for flat areas. They include horizontal/horizontal sloped surface albedo (HHSA) and inclined/inclined sloped surface albedo (IISA). Methods for retrieving HHSA and IISA in mountains have not been well-explored. Here, we retrieved HHSA and IISA on sloping terrain from Landsat 8 using a direct estimation algorithm. We simulated a dataset of Landsat top-of-atmosphere (TOA) reflectance and surface albedo with discrete anisotropic radiative transfer (DART) model, for variable atmospheric, vegetation, soil, and topography properties. Then, we used artificial neural networks (ANNs) to derive an empirical relationship between TOA reflectance and surface albedo. The accuracy of our method was verified with in situ measurements: root mean squared error (RMSE) and bias equal to 0.029 and -0.010 for HHSA, and 0.023 and -0.001 for IISA, respectively. Several albedo results (HHSA, IISA, values without topographic consideration) were evaluated and compared. HHSA was found similar to albedo without topographic consideration, but IISA, considered as the 'true albedo' for sloping terrain, showed large difference from them. This study demonstrated the feasibility of surface albedo estimation from Landsat TOA reflectance directly in rugged terrains and advanced our understanding of energy budget in mountains. |
Persistent Identifier | http://hdl.handle.net/10722/323155 |
ISSN | 2023 Impact Factor: 7.5 2023 SCImago Journal Rankings: 2.403 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ma, Yichuan | - |
dc.contributor.author | He, Tao | - |
dc.contributor.author | Liang, Shunlin | - |
dc.contributor.author | Wen, Jianguang | - |
dc.contributor.author | Gastellu-Etchegorry, Jean Philippe | - |
dc.contributor.author | Chen, Jiang | - |
dc.contributor.author | DIng, Anxin | - |
dc.contributor.author | Feng, Siqi | - |
dc.date.accessioned | 2022-11-18T11:55:06Z | - |
dc.date.available | 2022-11-18T11:55:06Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | IEEE Transactions on Geoscience and Remote Sensing, 2022, v. 60, article no. 4408914 | - |
dc.identifier.issn | 0196-2892 | - |
dc.identifier.uri | http://hdl.handle.net/10722/323155 | - |
dc.description.abstract | Surface albedo plays a key role in global climate modeling as a factor controlling the energy budget. Satellite observations were utilized to estimate surface albedo at global and regional scales with good precision over flat areas. However, because topography greatly complicates radiative transfer (RT) processes, estimating the albedo of rugged terrain with satellite data remains a challenge. In addition, albedo definitions over sloping terrain differ from that for flat areas. They include horizontal/horizontal sloped surface albedo (HHSA) and inclined/inclined sloped surface albedo (IISA). Methods for retrieving HHSA and IISA in mountains have not been well-explored. Here, we retrieved HHSA and IISA on sloping terrain from Landsat 8 using a direct estimation algorithm. We simulated a dataset of Landsat top-of-atmosphere (TOA) reflectance and surface albedo with discrete anisotropic radiative transfer (DART) model, for variable atmospheric, vegetation, soil, and topography properties. Then, we used artificial neural networks (ANNs) to derive an empirical relationship between TOA reflectance and surface albedo. The accuracy of our method was verified with in situ measurements: root mean squared error (RMSE) and bias equal to 0.029 and -0.010 for HHSA, and 0.023 and -0.001 for IISA, respectively. Several albedo results (HHSA, IISA, values without topographic consideration) were evaluated and compared. HHSA was found similar to albedo without topographic consideration, but IISA, considered as the 'true albedo' for sloping terrain, showed large difference from them. This study demonstrated the feasibility of surface albedo estimation from Landsat TOA reflectance directly in rugged terrains and advanced our understanding of energy budget in mountains. | - |
dc.language | eng | - |
dc.relation.ispartof | IEEE Transactions on Geoscience and Remote Sensing | - |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.subject | Artificial neural network (ANN) | - |
dc.subject | direct estimation algorithm | - |
dc.subject | discrete anisotropic radiative transfer (DART) | - |
dc.subject | Landsat | - |
dc.subject | sloping terrain | - |
dc.subject | surface albedo | - |
dc.title | Landsat Snow-Free Surface Albedo Estimation over Sloping Terrain: Algorithm Development and Evaluation | - |
dc.type | Article | - |
dc.description.nature | published_or_final_version | - |
dc.identifier.doi | 10.1109/TGRS.2022.3149762 | - |
dc.identifier.scopus | eid_2-s2.0-85124739493 | - |
dc.identifier.volume | 60 | - |
dc.identifier.spage | article no. 4408914 | - |
dc.identifier.epage | article no. 4408914 | - |
dc.identifier.eissn | 1558-0644 | - |
dc.identifier.isi | WOS:000772472400025 | - |