File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.3390/risks8010006
- Scopus: eid_2-s2.0-85079478620
- WOS: WOS:000524496300018
Supplementary
- Citations:
- Appears in Collections:
Article: Markov chain monte carlo methods for estimating systemic risk allocations
Title | Markov chain monte carlo methods for estimating systemic risk allocations |
---|---|
Authors | |
Keywords | Capital allocation Conditional Value-at-Risk (CoVaR) Copula models Quantitative risk management Systemic risk measures |
Issue Date | 2020 |
Citation | Risks, 2020, v. 8, n. 1, article no. 6 How to Cite? |
Abstract | In this paper, we propose a novel framework for estimating systemic risk measures and risk allocations based on Markov Chain Monte Carlo (MCMC) methods. We consider a class of allocations whose jth component can be written as some risk measure of the jth conditional marginal loss distribution given the so-called crisis event. By considering a crisis event as an intersection of linear constraints, this class of allocations covers, for example, conditional Value-at-Risk (CoVaR), conditional expected shortfall (CoES), VaR contributions, and range VaR (RVaR) contributions as special cases. For this class of allocations, analytical calculations are rarely available, and numerical computations based on Monte Carlo (MC) methods often provide inefficient estimates due to the rare-event character of the crisis events. We propose an MCMC estimator constructed from a sample path of a Markov chain whose stationary distribution is the conditional distribution given the crisis event. Efficient constructions of Markov chains, such as the Hamiltonian Monte Carlo and Gibbs sampler, are suggested and studied depending on the crisis event and the underlying loss distribution. The efficiency of the MCMC estimators is demonstrated in a series of numerical experiments. |
Persistent Identifier | http://hdl.handle.net/10722/325467 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Koike, Takaaki | - |
dc.contributor.author | Hofert, Marius | - |
dc.date.accessioned | 2023-02-27T07:33:33Z | - |
dc.date.available | 2023-02-27T07:33:33Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Risks, 2020, v. 8, n. 1, article no. 6 | - |
dc.identifier.uri | http://hdl.handle.net/10722/325467 | - |
dc.description.abstract | In this paper, we propose a novel framework for estimating systemic risk measures and risk allocations based on Markov Chain Monte Carlo (MCMC) methods. We consider a class of allocations whose jth component can be written as some risk measure of the jth conditional marginal loss distribution given the so-called crisis event. By considering a crisis event as an intersection of linear constraints, this class of allocations covers, for example, conditional Value-at-Risk (CoVaR), conditional expected shortfall (CoES), VaR contributions, and range VaR (RVaR) contributions as special cases. For this class of allocations, analytical calculations are rarely available, and numerical computations based on Monte Carlo (MC) methods often provide inefficient estimates due to the rare-event character of the crisis events. We propose an MCMC estimator constructed from a sample path of a Markov chain whose stationary distribution is the conditional distribution given the crisis event. Efficient constructions of Markov chains, such as the Hamiltonian Monte Carlo and Gibbs sampler, are suggested and studied depending on the crisis event and the underlying loss distribution. The efficiency of the MCMC estimators is demonstrated in a series of numerical experiments. | - |
dc.language | eng | - |
dc.relation.ispartof | Risks | - |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.subject | Capital allocation | - |
dc.subject | Conditional Value-at-Risk (CoVaR) | - |
dc.subject | Copula models | - |
dc.subject | Quantitative risk management | - |
dc.subject | Systemic risk measures | - |
dc.title | Markov chain monte carlo methods for estimating systemic risk allocations | - |
dc.type | Article | - |
dc.description.nature | published_or_final_version | - |
dc.identifier.doi | 10.3390/risks8010006 | - |
dc.identifier.scopus | eid_2-s2.0-85079478620 | - |
dc.identifier.volume | 8 | - |
dc.identifier.issue | 1 | - |
dc.identifier.spage | article no. 6 | - |
dc.identifier.epage | article no. 6 | - |
dc.identifier.eissn | 2227-9091 | - |
dc.identifier.isi | WOS:000524496300018 | - |