File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Creating two-dimensional solid helium via diamond lattice confinement

TitleCreating two-dimensional solid helium via diamond lattice confinement
Authors
Issue Date2022
Citation
Nature Communications, 2022, v. 13, n. 1, article no. 5990 How to Cite?
AbstractThe universe abounds with solid helium in polymorphic forms. Therefore, exploring the allotropes of helium remains vital to our understanding of nature. However, it is challenging to produce, observe and utilize solid helium on the earth because high-pressure techniques are required to solidify helium. Here we report the discovery of room-temperature two-dimensional solid helium through the diamond lattice confinement effect. Controllable ion implantation enables the self-assembly of monolayer helium atoms between {100} diamond lattice planes. Using state-of-the-art integrated differential phase contrast microscopy, we decipher the buckled tetragonal arrangement of solid helium monolayers with an anisotropic nature compressed by the robust diamond lattice. These distinctive helium monolayers, in turn, produce substantial compressive strains to the surrounded diamond lattice, resulting in a large-scale bandgap narrowing up to ~2.2 electron volts. This approach opens up new avenues for steerable manipulation of solid helium for achieving intrinsic strain doping with profound applications.
Persistent Identifierhttp://hdl.handle.net/10722/326365
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorLin, Weitong-
dc.contributor.authorLi, Yiran-
dc.contributor.authorde Graaf, Sytze-
dc.contributor.authorWang, Gang-
dc.contributor.authorLin, Junhao-
dc.contributor.authorZhang, Hui-
dc.contributor.authorZhao, Shijun-
dc.contributor.authorChen, Da-
dc.contributor.authorLiu, Shaofei-
dc.contributor.authorFan, Jun-
dc.contributor.authorKooi, Bart J.-
dc.contributor.authorLu, Yang-
dc.contributor.authorYang, Tao-
dc.contributor.authorYang, Chin Hua-
dc.contributor.authorLiu, Chain Tsuan-
dc.contributor.authorKai, Ji jung-
dc.date.accessioned2023-03-09T10:00:06Z-
dc.date.available2023-03-09T10:00:06Z-
dc.date.issued2022-
dc.identifier.citationNature Communications, 2022, v. 13, n. 1, article no. 5990-
dc.identifier.urihttp://hdl.handle.net/10722/326365-
dc.description.abstractThe universe abounds with solid helium in polymorphic forms. Therefore, exploring the allotropes of helium remains vital to our understanding of nature. However, it is challenging to produce, observe and utilize solid helium on the earth because high-pressure techniques are required to solidify helium. Here we report the discovery of room-temperature two-dimensional solid helium through the diamond lattice confinement effect. Controllable ion implantation enables the self-assembly of monolayer helium atoms between {100} diamond lattice planes. Using state-of-the-art integrated differential phase contrast microscopy, we decipher the buckled tetragonal arrangement of solid helium monolayers with an anisotropic nature compressed by the robust diamond lattice. These distinctive helium monolayers, in turn, produce substantial compressive strains to the surrounded diamond lattice, resulting in a large-scale bandgap narrowing up to ~2.2 electron volts. This approach opens up new avenues for steerable manipulation of solid helium for achieving intrinsic strain doping with profound applications.-
dc.languageeng-
dc.relation.ispartofNature Communications-
dc.titleCreating two-dimensional solid helium via diamond lattice confinement-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1038/s41467-022-33601-5-
dc.identifier.pmid36220818-
dc.identifier.scopuseid_2-s2.0-85139601748-
dc.identifier.volume13-
dc.identifier.issue1-
dc.identifier.spagearticle no. 5990-
dc.identifier.epagearticle no. 5990-
dc.identifier.eissn2041-1723-
dc.identifier.isiWOS:000866124200008-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats