File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Development and application of a novel microfabricated device for the in situ tensile testing of 1-D nanomaterials

TitleDevelopment and application of a novel microfabricated device for the in situ tensile testing of 1-D nanomaterials
Authors
KeywordsIn situ
Microdevices
Nanoindenter
Nanomanipulation
Nanomechanics
Issue Date2010
Citation
Journal of Microelectromechanical Systems, 2010, v. 19, n. 3, p. 675-682 How to Cite?
AbstractWe report on the development and application of a silicon microdevice for the in situ quantitative mechanical characterization of single 1-D nanomaterials within a scanning electron microscope equipped with a quantitative nanoindenter. The design makes it possible to convert a compressive nanoindentation force applied to a shuttle to uniaxial tension on a specimen attached to a sample stage. Finite-element analysis and experimental calibration have been employed to extract the specimen stress versus strain curve from the indentation load versus displacement curve. The stress versus strain curves for three 200300-nm-diameter Ni nanowire specimens are presented and analyzed. © 2010 IEEE.
Persistent Identifierhttp://hdl.handle.net/10722/326399
ISSN
2021 Impact Factor: 2.829
2020 SCImago Journal Rankings: 0.596

 

DC FieldValueLanguage
dc.contributor.authorGanesan, Yogeeswaran-
dc.contributor.authorLu, Yang-
dc.contributor.authorPeng, Cheng-
dc.contributor.authorLu, Hao-
dc.contributor.authorBallarini, Roberto-
dc.contributor.authorLou, Jun-
dc.date.accessioned2023-03-09T10:00:22Z-
dc.date.available2023-03-09T10:00:22Z-
dc.date.issued2010-
dc.identifier.citationJournal of Microelectromechanical Systems, 2010, v. 19, n. 3, p. 675-682-
dc.identifier.issn1057-7157-
dc.identifier.urihttp://hdl.handle.net/10722/326399-
dc.description.abstractWe report on the development and application of a silicon microdevice for the in situ quantitative mechanical characterization of single 1-D nanomaterials within a scanning electron microscope equipped with a quantitative nanoindenter. The design makes it possible to convert a compressive nanoindentation force applied to a shuttle to uniaxial tension on a specimen attached to a sample stage. Finite-element analysis and experimental calibration have been employed to extract the specimen stress versus strain curve from the indentation load versus displacement curve. The stress versus strain curves for three 200300-nm-diameter Ni nanowire specimens are presented and analyzed. © 2010 IEEE.-
dc.languageeng-
dc.relation.ispartofJournal of Microelectromechanical Systems-
dc.subjectIn situ-
dc.subjectMicrodevices-
dc.subjectNanoindenter-
dc.subjectNanomanipulation-
dc.subjectNanomechanics-
dc.titleDevelopment and application of a novel microfabricated device for the in situ tensile testing of 1-D nanomaterials-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1109/JMEMS.2010.2046014-
dc.identifier.scopuseid_2-s2.0-77953122842-
dc.identifier.volume19-
dc.identifier.issue3-
dc.identifier.spage675-
dc.identifier.epage682-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats