File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Euclidean reconstruction and reprojection up to subgroups

TitleEuclidean reconstruction and reprojection up to subgroups
Authors
Issue Date2000
Citation
International Journal of Computer Vision, 2000, v. 38, n. 3, p. 219-229 How to Cite?
AbstractThe necessary and sufficient conditions for being able to estimate scene structure, motion and camera calibration from a sequence of images are very rarely satisfied in practice. What exactly can be estimated in sequences of practical importance, when such conditions are not satisfied? In this paper we give a complete answer to this question. For every camera motion that fails to meet the conditions, we give explicit formulas for the ambiguities in the reconstructed scene, motion and calibration. Such a characterization is crucial both for designing robust estimation algorithms (that do not try to recover parameters that cannot be recovered), and for generating novel views of the scene by controlling the vantage point. To this end, we characterize explicitly all the vantage points that give rise to a valid Euclidean reprojection regardless of the ambiguity in the reconstruction. We also characterize vantage points that generate views that are altogether invariant to the ambiguity. All the results are presented using simple notation that involves no tensors nor complex projective geometry, and should be accessible with basic background in linear algebra.
Persistent Identifierhttp://hdl.handle.net/10722/326643
ISSN
2023 Impact Factor: 11.6
2023 SCImago Journal Rankings: 6.668
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorMa, Yi-
dc.contributor.authorSoatto, Stefano-
dc.contributor.authorKošecká, Jana-
dc.contributor.authorSastry, Shankar-
dc.date.accessioned2023-03-31T05:25:27Z-
dc.date.available2023-03-31T05:25:27Z-
dc.date.issued2000-
dc.identifier.citationInternational Journal of Computer Vision, 2000, v. 38, n. 3, p. 219-229-
dc.identifier.issn0920-5691-
dc.identifier.urihttp://hdl.handle.net/10722/326643-
dc.description.abstractThe necessary and sufficient conditions for being able to estimate scene structure, motion and camera calibration from a sequence of images are very rarely satisfied in practice. What exactly can be estimated in sequences of practical importance, when such conditions are not satisfied? In this paper we give a complete answer to this question. For every camera motion that fails to meet the conditions, we give explicit formulas for the ambiguities in the reconstructed scene, motion and calibration. Such a characterization is crucial both for designing robust estimation algorithms (that do not try to recover parameters that cannot be recovered), and for generating novel views of the scene by controlling the vantage point. To this end, we characterize explicitly all the vantage points that give rise to a valid Euclidean reprojection regardless of the ambiguity in the reconstruction. We also characterize vantage points that generate views that are altogether invariant to the ambiguity. All the results are presented using simple notation that involves no tensors nor complex projective geometry, and should be accessible with basic background in linear algebra.-
dc.languageeng-
dc.relation.ispartofInternational Journal of Computer Vision-
dc.titleEuclidean reconstruction and reprojection up to subgroups-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1023/A:1008143307025-
dc.identifier.scopuseid_2-s2.0-0034223693-
dc.identifier.volume38-
dc.identifier.issue3-
dc.identifier.spage219-
dc.identifier.epage229-
dc.identifier.isiWOS:000089239400003-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats