File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.4208/NMTMA.OA-2021-0040
- Scopus: eid_2-s2.0-85115777547
- WOS: WOS:000695218700010
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: On a parabolic sine-gordon model
Title | On a parabolic sine-gordon model |
---|---|
Authors | |
Keywords | Backward differentiation formula Implicit-explicit scheme Sine-Gordon equation |
Issue Date | 2021 |
Citation | Numerical Mathematics, 2021, v. 14, n. 4, p. 1068-1084 How to Cite? |
Abstract | We consider a parabolic sine-Gordon model with periodic boundary conditions. We prove a fundamental maximum principle which gives a priori uniform control of the solution. In the one-dimensional case we classify all bounded steady states and exhibit some explicit solutions. For the numerical discretization we employ first order IMEX, and second order BDF2 discretization without any additional stabilization term. We rigorously prove the energy stability of the numerical schemes under nearly sharp and quite mild time step constraints. We demonstrate the striking similarity of the parabolic sine-Gordon model with the standard Allen-Cahn equations with double well potentials. |
Persistent Identifier | http://hdl.handle.net/10722/327359 |
ISSN | 2023 Impact Factor: 1.9 2023 SCImago Journal Rankings: 0.670 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cheng, Xinyu | - |
dc.contributor.author | Li, Dong | - |
dc.contributor.author | Quan, Chaoyu | - |
dc.contributor.author | Yang, Wen | - |
dc.date.accessioned | 2023-03-31T05:30:46Z | - |
dc.date.available | 2023-03-31T05:30:46Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Numerical Mathematics, 2021, v. 14, n. 4, p. 1068-1084 | - |
dc.identifier.issn | 1004-8979 | - |
dc.identifier.uri | http://hdl.handle.net/10722/327359 | - |
dc.description.abstract | We consider a parabolic sine-Gordon model with periodic boundary conditions. We prove a fundamental maximum principle which gives a priori uniform control of the solution. In the one-dimensional case we classify all bounded steady states and exhibit some explicit solutions. For the numerical discretization we employ first order IMEX, and second order BDF2 discretization without any additional stabilization term. We rigorously prove the energy stability of the numerical schemes under nearly sharp and quite mild time step constraints. We demonstrate the striking similarity of the parabolic sine-Gordon model with the standard Allen-Cahn equations with double well potentials. | - |
dc.language | eng | - |
dc.relation.ispartof | Numerical Mathematics | - |
dc.subject | Backward differentiation formula | - |
dc.subject | Implicit-explicit scheme | - |
dc.subject | Sine-Gordon equation | - |
dc.title | On a parabolic sine-gordon model | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.4208/NMTMA.OA-2021-0040 | - |
dc.identifier.scopus | eid_2-s2.0-85115777547 | - |
dc.identifier.volume | 14 | - |
dc.identifier.issue | 4 | - |
dc.identifier.spage | 1068 | - |
dc.identifier.epage | 1084 | - |
dc.identifier.eissn | 2079-7338 | - |
dc.identifier.isi | WOS:000695218700010 | - |