File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1002/asjc.2909
- Scopus: eid_2-s2.0-85133358664
- WOS: WOS:000820606000001
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Stability and stabilization of periodic piecewise positive systems: A time segmentation approach
Title | Stability and stabilization of periodic piecewise positive systems: A time segmentation approach |
---|---|
Authors | |
Keywords | decay rate periodic piecewise systems positive systems stability stabilization |
Issue Date | 2023 |
Citation | Asian Journal of Control, 2023, v. 25, n. 2, p. 677-694 How to Cite? |
Abstract | This paper is concerned with the stability analysis and stabilization of periodic piecewise positive systems. By constructing a time-scheduled copositive Lyapunov function with a time segmentation approach, an equivalent stability condition, determined via linear programming, for periodic piecewise positive systems is established. Based on the asymptotic stability condition, the spectral radius characterization of the state transition matrix is proposed. The relation between the spectral radius of the state transition matrix and the convergent rate of the system is also revealed. An iterative algorithm is developed to stabilize the system by decreasing the spectral radius of the state transition matrix. Finally, numerical examples are given to illustrate the results. |
Persistent Identifier | http://hdl.handle.net/10722/327929 |
ISSN | 2023 Impact Factor: 2.7 2023 SCImago Journal Rankings: 0.677 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhu, Bohao | - |
dc.contributor.author | Lam, James | - |
dc.contributor.author | Song, Xiaoqi | - |
dc.contributor.author | Lin, Hong | - |
dc.contributor.author | Chan, Jason Ying Kuen | - |
dc.contributor.author | Kwok, Ka Wai | - |
dc.date.accessioned | 2023-06-05T06:52:44Z | - |
dc.date.available | 2023-06-05T06:52:44Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Asian Journal of Control, 2023, v. 25, n. 2, p. 677-694 | - |
dc.identifier.issn | 1561-8625 | - |
dc.identifier.uri | http://hdl.handle.net/10722/327929 | - |
dc.description.abstract | This paper is concerned with the stability analysis and stabilization of periodic piecewise positive systems. By constructing a time-scheduled copositive Lyapunov function with a time segmentation approach, an equivalent stability condition, determined via linear programming, for periodic piecewise positive systems is established. Based on the asymptotic stability condition, the spectral radius characterization of the state transition matrix is proposed. The relation between the spectral radius of the state transition matrix and the convergent rate of the system is also revealed. An iterative algorithm is developed to stabilize the system by decreasing the spectral radius of the state transition matrix. Finally, numerical examples are given to illustrate the results. | - |
dc.language | eng | - |
dc.relation.ispartof | Asian Journal of Control | - |
dc.subject | decay rate | - |
dc.subject | periodic piecewise systems | - |
dc.subject | positive systems | - |
dc.subject | stability | - |
dc.subject | stabilization | - |
dc.title | Stability and stabilization of periodic piecewise positive systems: A time segmentation approach | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1002/asjc.2909 | - |
dc.identifier.scopus | eid_2-s2.0-85133358664 | - |
dc.identifier.hkuros | 334552 | - |
dc.identifier.volume | 25 | - |
dc.identifier.issue | 2 | - |
dc.identifier.spage | 677 | - |
dc.identifier.epage | 694 | - |
dc.identifier.eissn | 1934-6093 | - |
dc.identifier.isi | WOS:000820606000001 | - |