File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1080/10485252.2011.616893
- Scopus: eid_2-s2.0-84863142526
- WOS: WOS:000302055800015
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Prediction for spatio-temporal models with autoregression in errors
Title | Prediction for spatio-temporal models with autoregression in errors |
---|---|
Authors | |
Keywords | local linear estimation nonparametric iteration produce spatio-temporal autoregression spatio-temporal model |
Issue Date | 2012 |
Citation | Journal of Nonparametric Statistics, 2012, v. 24, n. 1, p. 217-244 How to Cite? |
Abstract | In various environmental studies spatio-temporal correlated data are involved, so there has been an increasing demand for spatio-temporal prediction methods that capture spatio-temporal correlation so as to improve the accuracy of prediction. In this paper we propose a nonparametric iteration procedure for spatio-temporal models with specific autocorrelation structures. We extended the local linear method for spatial data to spatio-temporal local linear models, taking both spatial and temporal characteristics into consideration. The asymptotic normality of the predictors is established under mild conditions. The results of a simulation and case study also show that our predictors perform better than the traditional local linear method. © 2012 American Statistical Association and Taylor & Francis. |
Persistent Identifier | http://hdl.handle.net/10722/329245 |
ISSN | 2023 Impact Factor: 0.8 2023 SCImago Journal Rankings: 0.440 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wang, Hongxia | - |
dc.contributor.author | Wang, Jinde | - |
dc.contributor.author | Huang, Bo | - |
dc.date.accessioned | 2023-08-09T03:31:26Z | - |
dc.date.available | 2023-08-09T03:31:26Z | - |
dc.date.issued | 2012 | - |
dc.identifier.citation | Journal of Nonparametric Statistics, 2012, v. 24, n. 1, p. 217-244 | - |
dc.identifier.issn | 1048-5252 | - |
dc.identifier.uri | http://hdl.handle.net/10722/329245 | - |
dc.description.abstract | In various environmental studies spatio-temporal correlated data are involved, so there has been an increasing demand for spatio-temporal prediction methods that capture spatio-temporal correlation so as to improve the accuracy of prediction. In this paper we propose a nonparametric iteration procedure for spatio-temporal models with specific autocorrelation structures. We extended the local linear method for spatial data to spatio-temporal local linear models, taking both spatial and temporal characteristics into consideration. The asymptotic normality of the predictors is established under mild conditions. The results of a simulation and case study also show that our predictors perform better than the traditional local linear method. © 2012 American Statistical Association and Taylor & Francis. | - |
dc.language | eng | - |
dc.relation.ispartof | Journal of Nonparametric Statistics | - |
dc.subject | local linear estimation | - |
dc.subject | nonparametric iteration produce | - |
dc.subject | spatio-temporal autoregression | - |
dc.subject | spatio-temporal model | - |
dc.title | Prediction for spatio-temporal models with autoregression in errors | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1080/10485252.2011.616893 | - |
dc.identifier.scopus | eid_2-s2.0-84863142526 | - |
dc.identifier.volume | 24 | - |
dc.identifier.issue | 1 | - |
dc.identifier.spage | 217 | - |
dc.identifier.epage | 244 | - |
dc.identifier.eissn | 1029-0311 | - |
dc.identifier.isi | WOS:000302055800015 | - |