File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Prediction for spatio-temporal models with autoregression in errors

TitlePrediction for spatio-temporal models with autoregression in errors
Authors
Keywordslocal linear estimation
nonparametric iteration produce
spatio-temporal autoregression
spatio-temporal model
Issue Date2012
Citation
Journal of Nonparametric Statistics, 2012, v. 24, n. 1, p. 217-244 How to Cite?
AbstractIn various environmental studies spatio-temporal correlated data are involved, so there has been an increasing demand for spatio-temporal prediction methods that capture spatio-temporal correlation so as to improve the accuracy of prediction. In this paper we propose a nonparametric iteration procedure for spatio-temporal models with specific autocorrelation structures. We extended the local linear method for spatial data to spatio-temporal local linear models, taking both spatial and temporal characteristics into consideration. The asymptotic normality of the predictors is established under mild conditions. The results of a simulation and case study also show that our predictors perform better than the traditional local linear method. © 2012 American Statistical Association and Taylor & Francis.
Persistent Identifierhttp://hdl.handle.net/10722/329245
ISSN
2023 Impact Factor: 0.8
2023 SCImago Journal Rankings: 0.440
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorWang, Hongxia-
dc.contributor.authorWang, Jinde-
dc.contributor.authorHuang, Bo-
dc.date.accessioned2023-08-09T03:31:26Z-
dc.date.available2023-08-09T03:31:26Z-
dc.date.issued2012-
dc.identifier.citationJournal of Nonparametric Statistics, 2012, v. 24, n. 1, p. 217-244-
dc.identifier.issn1048-5252-
dc.identifier.urihttp://hdl.handle.net/10722/329245-
dc.description.abstractIn various environmental studies spatio-temporal correlated data are involved, so there has been an increasing demand for spatio-temporal prediction methods that capture spatio-temporal correlation so as to improve the accuracy of prediction. In this paper we propose a nonparametric iteration procedure for spatio-temporal models with specific autocorrelation structures. We extended the local linear method for spatial data to spatio-temporal local linear models, taking both spatial and temporal characteristics into consideration. The asymptotic normality of the predictors is established under mild conditions. The results of a simulation and case study also show that our predictors perform better than the traditional local linear method. © 2012 American Statistical Association and Taylor & Francis.-
dc.languageeng-
dc.relation.ispartofJournal of Nonparametric Statistics-
dc.subjectlocal linear estimation-
dc.subjectnonparametric iteration produce-
dc.subjectspatio-temporal autoregression-
dc.subjectspatio-temporal model-
dc.titlePrediction for spatio-temporal models with autoregression in errors-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1080/10485252.2011.616893-
dc.identifier.scopuseid_2-s2.0-84863142526-
dc.identifier.volume24-
dc.identifier.issue1-
dc.identifier.spage217-
dc.identifier.epage244-
dc.identifier.eissn1029-0311-
dc.identifier.isiWOS:000302055800015-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats