File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Minimal length elements of finite coxeter groups

TitleMinimal length elements of finite coxeter groups
Authors
Issue Date2012
Citation
Duke Mathematical Journal, 2012, v. 161, n. 15, p. 2945-2967 How to Cite?
AbstractWe give a geometric proof that any minimal length element in a (twisted) conjugacy class of a finite Coxeter group W has remarkable properties with respect to conjugation, taking powers in the associated braid monoid and taking the centralizer in W. © 2012.
Persistent Identifierhttp://hdl.handle.net/10722/329263
ISSN
2023 Impact Factor: 2.3
2023 SCImago Journal Rankings: 3.774
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorHe, Xuhua-
dc.contributor.authorNie, Sian-
dc.date.accessioned2023-08-09T03:31:33Z-
dc.date.available2023-08-09T03:31:33Z-
dc.date.issued2012-
dc.identifier.citationDuke Mathematical Journal, 2012, v. 161, n. 15, p. 2945-2967-
dc.identifier.issn0012-7094-
dc.identifier.urihttp://hdl.handle.net/10722/329263-
dc.description.abstractWe give a geometric proof that any minimal length element in a (twisted) conjugacy class of a finite Coxeter group W has remarkable properties with respect to conjugation, taking powers in the associated braid monoid and taking the centralizer in W. © 2012.-
dc.languageeng-
dc.relation.ispartofDuke Mathematical Journal-
dc.titleMinimal length elements of finite coxeter groups-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1215/00127094-1902382-
dc.identifier.scopuseid_2-s2.0-84871239819-
dc.identifier.volume161-
dc.identifier.issue15-
dc.identifier.spage2945-
dc.identifier.epage2967-
dc.identifier.isiWOS:000312039900005-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats