File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Projecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Shared Socioeconomic Pathways

TitleProjecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Shared Socioeconomic Pathways
Authors
KeywordsGDP
population
SDG
SSP
urban area
urbanization
Issue Date2019
Citation
Earth's Future, 2019, v. 7, n. 4, p. 351-362 How to Cite?
AbstractImproved understanding of the potential growth of urban areas at the national and global levels is needed for sustainable urban development. Current panel data analysis and local scale modeling are limited in projecting global urban area growth with large spatial heterogeneities. In this study, we developed country-specific urban area growth models using the time series data set of global urban extents (1992–2013) and projected the future growth of urban areas under five Shared Socioeconomic Pathways (SSPs). Our results indicate the global urban area would increase roughly 40–67% under five SSPs until 2050 relative to the base year of 2013, and this trend would continue to a growth ratio of more than 200% by 2100. The growth of urban areas under relatively unsustainable development pathways (e.g., regional rivalry SSP3 and inequality SSP4) is smaller compared to other SSPs. Although developing countries would remain as leading contributors to the increase of global urban areas in the future, they may exhibit different temporal patterns, that is, plateaued or monotonically increasing trends. This variation is primarily attributed to the compounding effect of the growth in population and gross domestic product. Our urban area data set presents a first country-level urban area projection under the five SSPs, spanning from 2013 to 2100. This data set has a great potential to support various global change studies, for example, urban sprawl simulation, integrated assessment modeling for sustainable development goals, and investigation of the impact of urbanization on atmospheric emissions, air quality, and human health.
Persistent Identifierhttp://hdl.handle.net/10722/329557
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorLi, Xuecao-
dc.contributor.authorZhou, Yuyu-
dc.contributor.authorEom, Jiyong-
dc.contributor.authorYu, Sha-
dc.contributor.authorAsrar, Ghassem R.-
dc.date.accessioned2023-08-09T03:33:39Z-
dc.date.available2023-08-09T03:33:39Z-
dc.date.issued2019-
dc.identifier.citationEarth's Future, 2019, v. 7, n. 4, p. 351-362-
dc.identifier.urihttp://hdl.handle.net/10722/329557-
dc.description.abstractImproved understanding of the potential growth of urban areas at the national and global levels is needed for sustainable urban development. Current panel data analysis and local scale modeling are limited in projecting global urban area growth with large spatial heterogeneities. In this study, we developed country-specific urban area growth models using the time series data set of global urban extents (1992–2013) and projected the future growth of urban areas under five Shared Socioeconomic Pathways (SSPs). Our results indicate the global urban area would increase roughly 40–67% under five SSPs until 2050 relative to the base year of 2013, and this trend would continue to a growth ratio of more than 200% by 2100. The growth of urban areas under relatively unsustainable development pathways (e.g., regional rivalry SSP3 and inequality SSP4) is smaller compared to other SSPs. Although developing countries would remain as leading contributors to the increase of global urban areas in the future, they may exhibit different temporal patterns, that is, plateaued or monotonically increasing trends. This variation is primarily attributed to the compounding effect of the growth in population and gross domestic product. Our urban area data set presents a first country-level urban area projection under the five SSPs, spanning from 2013 to 2100. This data set has a great potential to support various global change studies, for example, urban sprawl simulation, integrated assessment modeling for sustainable development goals, and investigation of the impact of urbanization on atmospheric emissions, air quality, and human health.-
dc.languageeng-
dc.relation.ispartofEarth's Future-
dc.subjectGDP-
dc.subjectpopulation-
dc.subjectSDG-
dc.subjectSSP-
dc.subjecturban area-
dc.subjecturbanization-
dc.titleProjecting Global Urban Area Growth Through 2100 Based on Historical Time Series Data and Future Shared Socioeconomic Pathways-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1029/2019EF001152-
dc.identifier.scopuseid_2-s2.0-85063885723-
dc.identifier.volume7-
dc.identifier.issue4-
dc.identifier.spage351-
dc.identifier.epage362-
dc.identifier.eissn2328-4277-
dc.identifier.isiWOS:000467396900002-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats