File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Stochastic proximal AUC maximization

TitleStochastic proximal AUC maximization
Authors
KeywordsAUC maximization
Imbalanced classification
Proximal operator
Stochastic gradient descent
Issue Date2021
Citation
Journal of Machine Learning Research, 2021, v. 22 How to Cite?
AbstractIn this paper we consider the problem of maximizing the Area under the ROC curve (AUC) which is a widely used performance metric in imbalanced classification and anomaly detection. Due to the pairwise nonlinearity of the objective function, classical SGD algorithms do not apply to the task of AUC maximization. We propose a novel stochastic proximal algorithm for AUC maximization which is scalable to large scale streaming data. Our algorithm can accommodate general penalty terms and is easy to implement with favorable O(d) space and per-iteration time complexities. We establish a high-probability convergence rate O(1/√T) for the general convex setting, and improve it to a fast convergence rate O(1/T) for the cases of strongly convex regularizers and no regularization term (without strong convexity). Our proof does not need the uniform boundedness assumption on the loss function or the iterates which is more fidelity to the practice. Finally, we perform extensive experiments over various benchmark data sets from real-world application domains which show the superior performance of our algorithm over the existing AUC maximization algorithms.
Persistent Identifierhttp://hdl.handle.net/10722/329709
ISSN
2023 Impact Factor: 4.3
2023 SCImago Journal Rankings: 2.796

 

DC FieldValueLanguage
dc.contributor.authorLei, Yunwen-
dc.contributor.authorYing, Yiming-
dc.date.accessioned2023-08-09T03:34:45Z-
dc.date.available2023-08-09T03:34:45Z-
dc.date.issued2021-
dc.identifier.citationJournal of Machine Learning Research, 2021, v. 22-
dc.identifier.issn1532-4435-
dc.identifier.urihttp://hdl.handle.net/10722/329709-
dc.description.abstractIn this paper we consider the problem of maximizing the Area under the ROC curve (AUC) which is a widely used performance metric in imbalanced classification and anomaly detection. Due to the pairwise nonlinearity of the objective function, classical SGD algorithms do not apply to the task of AUC maximization. We propose a novel stochastic proximal algorithm for AUC maximization which is scalable to large scale streaming data. Our algorithm can accommodate general penalty terms and is easy to implement with favorable O(d) space and per-iteration time complexities. We establish a high-probability convergence rate O(1/√T) for the general convex setting, and improve it to a fast convergence rate O(1/T) for the cases of strongly convex regularizers and no regularization term (without strong convexity). Our proof does not need the uniform boundedness assumption on the loss function or the iterates which is more fidelity to the practice. Finally, we perform extensive experiments over various benchmark data sets from real-world application domains which show the superior performance of our algorithm over the existing AUC maximization algorithms.-
dc.languageeng-
dc.relation.ispartofJournal of Machine Learning Research-
dc.subjectAUC maximization-
dc.subjectImbalanced classification-
dc.subjectProximal operator-
dc.subjectStochastic gradient descent-
dc.titleStochastic proximal AUC maximization-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.scopuseid_2-s2.0-85105893722-
dc.identifier.volume22-
dc.identifier.eissn1533-7928-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats