File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.2140/ANT.2021.15.2037
- Scopus: eid_2-s2.0-85120865040
- WOS: WOS:000719354600005
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Flag manifolds over semifields
Title | Flag manifolds over semifields |
---|---|
Authors | |
Keywords | Flag manifolds Kac–Moody groups Total positivity |
Issue Date | 2021 |
Citation | Algebra and Number Theory, 2021, v. 15, n. 8, p. 2037-2069 How to Cite? |
Abstract | In this paper, we develop the theory of flag manifolds over a semifield for any Kac–Moody root datum. We show that a flag manifold over a semifield admits a natural action of the monoid over that semifield associated with the Kac–Moody datum and admits a cellular decomposition. This extends the previous work of Lusztig, Postnikov, Rietsch, and others on the totally nonnegative flag manifolds (of finite type) and the work of Lusztig, Speyer, Williams on the tropical flag manifolds (of finite type). As an important consequence, we prove a conjecture of Lusztig on the duality of a totally nonnegative flag manifold of finite type. |
Persistent Identifier | http://hdl.handle.net/10722/329760 |
ISSN | 2023 Impact Factor: 0.9 2023 SCImago Journal Rankings: 1.353 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bao, Huanchen | - |
dc.contributor.author | He, Xuhua | - |
dc.date.accessioned | 2023-08-09T03:35:08Z | - |
dc.date.available | 2023-08-09T03:35:08Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Algebra and Number Theory, 2021, v. 15, n. 8, p. 2037-2069 | - |
dc.identifier.issn | 1937-0652 | - |
dc.identifier.uri | http://hdl.handle.net/10722/329760 | - |
dc.description.abstract | In this paper, we develop the theory of flag manifolds over a semifield for any Kac–Moody root datum. We show that a flag manifold over a semifield admits a natural action of the monoid over that semifield associated with the Kac–Moody datum and admits a cellular decomposition. This extends the previous work of Lusztig, Postnikov, Rietsch, and others on the totally nonnegative flag manifolds (of finite type) and the work of Lusztig, Speyer, Williams on the tropical flag manifolds (of finite type). As an important consequence, we prove a conjecture of Lusztig on the duality of a totally nonnegative flag manifold of finite type. | - |
dc.language | eng | - |
dc.relation.ispartof | Algebra and Number Theory | - |
dc.subject | Flag manifolds | - |
dc.subject | Kac–Moody groups | - |
dc.subject | Total positivity | - |
dc.title | Flag manifolds over semifields | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.2140/ANT.2021.15.2037 | - |
dc.identifier.scopus | eid_2-s2.0-85120865040 | - |
dc.identifier.volume | 15 | - |
dc.identifier.issue | 8 | - |
dc.identifier.spage | 2037 | - |
dc.identifier.epage | 2069 | - |
dc.identifier.isi | WOS:000719354600005 | - |