File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1088/1367-2630/ac8307
- Scopus: eid_2-s2.0-85136041259
- WOS: WOS:000839216400001
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: A defect detection method for topological phononic materials based on few-shot learning
Title | A defect detection method for topological phononic materials based on few-shot learning |
---|---|
Authors | |
Keywords | Deep learning Defect detection Few-shot learning Structure classification Topological materials |
Issue Date | 2022 |
Citation | New Journal of Physics, 2022, v. 24, n. 8, article no. 083012 How to Cite? |
Abstract | Topological phononic materials have been widely used in many fields, such as topological antennas, asymmetric waveguides, and noise insulation. However, due to the limitations of the manufacturing process, topological protection is vulnerable to some severe defects that may affect the application effect. Therefore, the quality inspection of topological materials is essential to ensure reliable results. Due to the low contrast and irregularity of defects and the similarity of topological phononics, they are difficult to recognize by traditional image processing algorithms, so manual detection is still mainstream at present. But manual detection requires experienced inspectors, which is expensive and time-consuming. In addition, topological materials are expensive to produce, and there is no large publicly available dataset, but deep learning usually relies on large datasets for training. To solve the above problems, we propose an automatic deep learning topology structure defect detection method (ADLTSDM) in this work, which could classify not only the structure of topological materials but also detect the defects of topological phononics based on a small dataset. ADLTSDM exploits the prior knowledge of the topological material structure and achieves an augmentation factor of more than 100 times through the random and fixed interval screenshot algorithm, thus enabling the training of deep neural networks with only two raw data. For defect detection, ADLTSDM has an accuracy of more than 97% and improves detection speed by more than 38% compared with manual detection. For structure classification, ADLTSDM can achieve an accuracy of over 99% and seven times faster speed compared with manual classification. Besides, the detection standard of ADLTSDM is unified, so the accuracy will not be affected by the experience of the inspectors, which has more potential in high-throughput industrial applications. |
Persistent Identifier | http://hdl.handle.net/10722/329874 |
ISSN | 2023 Impact Factor: 2.8 2023 SCImago Journal Rankings: 1.090 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhang, Beini | - |
dc.contributor.author | Luo, Xiao | - |
dc.contributor.author | Lyu, Yetao | - |
dc.contributor.author | Wu, Xiaoxiao | - |
dc.contributor.author | Wen, Weijia | - |
dc.date.accessioned | 2023-08-09T03:35:58Z | - |
dc.date.available | 2023-08-09T03:35:58Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | New Journal of Physics, 2022, v. 24, n. 8, article no. 083012 | - |
dc.identifier.issn | 1367-2630 | - |
dc.identifier.uri | http://hdl.handle.net/10722/329874 | - |
dc.description.abstract | Topological phononic materials have been widely used in many fields, such as topological antennas, asymmetric waveguides, and noise insulation. However, due to the limitations of the manufacturing process, topological protection is vulnerable to some severe defects that may affect the application effect. Therefore, the quality inspection of topological materials is essential to ensure reliable results. Due to the low contrast and irregularity of defects and the similarity of topological phononics, they are difficult to recognize by traditional image processing algorithms, so manual detection is still mainstream at present. But manual detection requires experienced inspectors, which is expensive and time-consuming. In addition, topological materials are expensive to produce, and there is no large publicly available dataset, but deep learning usually relies on large datasets for training. To solve the above problems, we propose an automatic deep learning topology structure defect detection method (ADLTSDM) in this work, which could classify not only the structure of topological materials but also detect the defects of topological phononics based on a small dataset. ADLTSDM exploits the prior knowledge of the topological material structure and achieves an augmentation factor of more than 100 times through the random and fixed interval screenshot algorithm, thus enabling the training of deep neural networks with only two raw data. For defect detection, ADLTSDM has an accuracy of more than 97% and improves detection speed by more than 38% compared with manual detection. For structure classification, ADLTSDM can achieve an accuracy of over 99% and seven times faster speed compared with manual classification. Besides, the detection standard of ADLTSDM is unified, so the accuracy will not be affected by the experience of the inspectors, which has more potential in high-throughput industrial applications. | - |
dc.language | eng | - |
dc.relation.ispartof | New Journal of Physics | - |
dc.subject | Deep learning | - |
dc.subject | Defect detection | - |
dc.subject | Few-shot learning | - |
dc.subject | Structure classification | - |
dc.subject | Topological materials | - |
dc.title | A defect detection method for topological phononic materials based on few-shot learning | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1088/1367-2630/ac8307 | - |
dc.identifier.scopus | eid_2-s2.0-85136041259 | - |
dc.identifier.volume | 24 | - |
dc.identifier.issue | 8 | - |
dc.identifier.spage | article no. 083012 | - |
dc.identifier.epage | article no. 083012 | - |
dc.identifier.isi | WOS:000839216400001 | - |