File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1090/S1088-4165-04-00213-4
- Scopus: eid_2-s2.0-18444366734
- Find via
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: Total positivity in the de concini-procesi compactification
Title | Total positivity in the de concini-procesi compactification |
---|---|
Authors | |
Issue Date | 2004 |
Citation | Representation Theory, 2004, v. 8, n. 3, p. 52-71 How to Cite? |
Abstract | We study the nonnegative part (Formula presantad) of the De Concini-Procesi compactification of a semisimple algebraic group G, as defined by Lusztig. Using positivity properties of the canonical basis and parametrization of flag varieties, we will give an explicit description of (Formula presantad). This answers the question of Lusztig in Total positivity and canonical bases, Algebraic groups and Lie groups (ed. G.I. Lehrer), Cambridge Univ. Press, 1997, pp. 281-295. We will also prove that (Formula presantad) has a cell decomposition which was conjectured by Lusztig. © 2004 American Mathematical Society. |
Persistent Identifier | http://hdl.handle.net/10722/330061 |
ISSN | 2023 Impact Factor: 0.7 2023 SCImago Journal Rankings: 0.917 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | He, Xuhua | - |
dc.date.accessioned | 2023-08-09T03:37:30Z | - |
dc.date.available | 2023-08-09T03:37:30Z | - |
dc.date.issued | 2004 | - |
dc.identifier.citation | Representation Theory, 2004, v. 8, n. 3, p. 52-71 | - |
dc.identifier.issn | 1088-4165 | - |
dc.identifier.uri | http://hdl.handle.net/10722/330061 | - |
dc.description.abstract | We study the nonnegative part (Formula presantad) of the De Concini-Procesi compactification of a semisimple algebraic group G, as defined by Lusztig. Using positivity properties of the canonical basis and parametrization of flag varieties, we will give an explicit description of (Formula presantad). This answers the question of Lusztig in Total positivity and canonical bases, Algebraic groups and Lie groups (ed. G.I. Lehrer), Cambridge Univ. Press, 1997, pp. 281-295. We will also prove that (Formula presantad) has a cell decomposition which was conjectured by Lusztig. © 2004 American Mathematical Society. | - |
dc.language | eng | - |
dc.relation.ispartof | Representation Theory | - |
dc.title | Total positivity in the de concini-procesi compactification | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1090/S1088-4165-04-00213-4 | - |
dc.identifier.scopus | eid_2-s2.0-18444366734 | - |
dc.identifier.volume | 8 | - |
dc.identifier.issue | 3 | - |
dc.identifier.spage | 52 | - |
dc.identifier.epage | 71 | - |