File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Unipotent variety in the group compactification

TitleUnipotent variety in the group compactification
Authors
KeywordsGroup compactifications
Steinberg fibers
Unipotent varieties
Issue Date2006
Citation
Advances in Mathematics, 2006, v. 203, n. 1, p. 109-131 How to Cite?
AbstractThe unipotent variety of a reductive algebraic group G plays an important role in the representation theory. In this paper, we will consider the closure over(U, -) of the unipotent variety in the De Concini-Procesi compactification over(G, -) of a connected simple algebraic group G. We will prove that over(U, -) - U is a union of some G-stable pieces introduced by Lusztig in [Moscow Math. J 4 (2004) 869-896]. This was first conjectured by Lusztig. We will also give an explicit description of over(U, -). It turns out that similar results hold for the closure of any Steinberg fiber in over(G, -). © 2005 Elsevier Inc. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/330069
ISSN
2023 Impact Factor: 1.5
2023 SCImago Journal Rankings: 2.022
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorHe, Xuhua-
dc.date.accessioned2023-08-09T03:37:34Z-
dc.date.available2023-08-09T03:37:34Z-
dc.date.issued2006-
dc.identifier.citationAdvances in Mathematics, 2006, v. 203, n. 1, p. 109-131-
dc.identifier.issn0001-8708-
dc.identifier.urihttp://hdl.handle.net/10722/330069-
dc.description.abstractThe unipotent variety of a reductive algebraic group G plays an important role in the representation theory. In this paper, we will consider the closure over(U, -) of the unipotent variety in the De Concini-Procesi compactification over(G, -) of a connected simple algebraic group G. We will prove that over(U, -) - U is a union of some G-stable pieces introduced by Lusztig in [Moscow Math. J 4 (2004) 869-896]. This was first conjectured by Lusztig. We will also give an explicit description of over(U, -). It turns out that similar results hold for the closure of any Steinberg fiber in over(G, -). © 2005 Elsevier Inc. All rights reserved.-
dc.languageeng-
dc.relation.ispartofAdvances in Mathematics-
dc.subjectGroup compactifications-
dc.subjectSteinberg fibers-
dc.subjectUnipotent varieties-
dc.titleUnipotent variety in the group compactification-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/j.aim.2005.04.004-
dc.identifier.scopuseid_2-s2.0-33646348970-
dc.identifier.volume203-
dc.identifier.issue1-
dc.identifier.spage109-
dc.identifier.epage131-
dc.identifier.eissn1090-2082-
dc.identifier.isiWOS:000238050400003-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats