File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A subalgebra of 0-Hecke algebra

TitleA subalgebra of 0-Hecke algebra
Authors
Keywords0-Hecke algebra
Coxeter groups
Issue Date2009
Citation
Journal of Algebra, 2009, v. 322, n. 11, p. 4030-4039 How to Cite?
AbstractLet (W, I) be a finite Coxeter group. In the case where W is a Weyl group, Berenstein and Kazhdan in [A. Berenstein, D. Kazhdan, Geometric and unipotent crystals. II. From unipotent bicrystals to crystal bases, in: Quantum Groups, in: Contemp. Math., vol. 433, Amer. Math. Soc., Providence, RI, 2007, pp. 13-88] constructed a monoid structure on the set of all subsets of I using unipotent χ-linear bicrystals. In this paper, we will generalize this result to all types of finite Coxeter groups (including non-crystallographic types). Our approach is more elementary, based on some combinatorics of Coxeter groups. Moreover, we will calculate this monoid structure explicitly for each type. © 2009 Elsevier Inc. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/330126
ISSN
2023 Impact Factor: 0.8
2023 SCImago Journal Rankings: 1.023
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorHe, Xuhua-
dc.date.accessioned2023-08-09T03:37:58Z-
dc.date.available2023-08-09T03:37:58Z-
dc.date.issued2009-
dc.identifier.citationJournal of Algebra, 2009, v. 322, n. 11, p. 4030-4039-
dc.identifier.issn0021-8693-
dc.identifier.urihttp://hdl.handle.net/10722/330126-
dc.description.abstractLet (W, I) be a finite Coxeter group. In the case where W is a Weyl group, Berenstein and Kazhdan in [A. Berenstein, D. Kazhdan, Geometric and unipotent crystals. II. From unipotent bicrystals to crystal bases, in: Quantum Groups, in: Contemp. Math., vol. 433, Amer. Math. Soc., Providence, RI, 2007, pp. 13-88] constructed a monoid structure on the set of all subsets of I using unipotent χ-linear bicrystals. In this paper, we will generalize this result to all types of finite Coxeter groups (including non-crystallographic types). Our approach is more elementary, based on some combinatorics of Coxeter groups. Moreover, we will calculate this monoid structure explicitly for each type. © 2009 Elsevier Inc. All rights reserved.-
dc.languageeng-
dc.relation.ispartofJournal of Algebra-
dc.subject0-Hecke algebra-
dc.subjectCoxeter groups-
dc.titleA subalgebra of 0-Hecke algebra-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/j.jalgebra.2009.04.003-
dc.identifier.scopuseid_2-s2.0-70349895255-
dc.identifier.volume322-
dc.identifier.issue11-
dc.identifier.spage4030-
dc.identifier.epage4039-
dc.identifier.eissn1090-266X-
dc.identifier.isiWOS:000271531100013-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats