File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.jalgebra.2009.04.003
- Scopus: eid_2-s2.0-70349895255
- WOS: WOS:000271531100013
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: A subalgebra of 0-Hecke algebra
Title | A subalgebra of 0-Hecke algebra |
---|---|
Authors | |
Keywords | 0-Hecke algebra Coxeter groups |
Issue Date | 2009 |
Citation | Journal of Algebra, 2009, v. 322, n. 11, p. 4030-4039 How to Cite? |
Abstract | Let (W, I) be a finite Coxeter group. In the case where W is a Weyl group, Berenstein and Kazhdan in [A. Berenstein, D. Kazhdan, Geometric and unipotent crystals. II. From unipotent bicrystals to crystal bases, in: Quantum Groups, in: Contemp. Math., vol. 433, Amer. Math. Soc., Providence, RI, 2007, pp. 13-88] constructed a monoid structure on the set of all subsets of I using unipotent χ-linear bicrystals. In this paper, we will generalize this result to all types of finite Coxeter groups (including non-crystallographic types). Our approach is more elementary, based on some combinatorics of Coxeter groups. Moreover, we will calculate this monoid structure explicitly for each type. © 2009 Elsevier Inc. All rights reserved. |
Persistent Identifier | http://hdl.handle.net/10722/330126 |
ISSN | 2023 Impact Factor: 0.8 2023 SCImago Journal Rankings: 1.023 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | He, Xuhua | - |
dc.date.accessioned | 2023-08-09T03:37:58Z | - |
dc.date.available | 2023-08-09T03:37:58Z | - |
dc.date.issued | 2009 | - |
dc.identifier.citation | Journal of Algebra, 2009, v. 322, n. 11, p. 4030-4039 | - |
dc.identifier.issn | 0021-8693 | - |
dc.identifier.uri | http://hdl.handle.net/10722/330126 | - |
dc.description.abstract | Let (W, I) be a finite Coxeter group. In the case where W is a Weyl group, Berenstein and Kazhdan in [A. Berenstein, D. Kazhdan, Geometric and unipotent crystals. II. From unipotent bicrystals to crystal bases, in: Quantum Groups, in: Contemp. Math., vol. 433, Amer. Math. Soc., Providence, RI, 2007, pp. 13-88] constructed a monoid structure on the set of all subsets of I using unipotent χ-linear bicrystals. In this paper, we will generalize this result to all types of finite Coxeter groups (including non-crystallographic types). Our approach is more elementary, based on some combinatorics of Coxeter groups. Moreover, we will calculate this monoid structure explicitly for each type. © 2009 Elsevier Inc. All rights reserved. | - |
dc.language | eng | - |
dc.relation.ispartof | Journal of Algebra | - |
dc.subject | 0-Hecke algebra | - |
dc.subject | Coxeter groups | - |
dc.title | A subalgebra of 0-Hecke algebra | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1016/j.jalgebra.2009.04.003 | - |
dc.identifier.scopus | eid_2-s2.0-70349895255 | - |
dc.identifier.volume | 322 | - |
dc.identifier.issue | 11 | - |
dc.identifier.spage | 4030 | - |
dc.identifier.epage | 4039 | - |
dc.identifier.eissn | 1090-266X | - |
dc.identifier.isi | WOS:000271531100013 | - |