File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1109/TCSVT.2023.3305978
- Scopus: eid_2-s2.0-85168738597
- Find via
Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: Unsupervised Light Field Depth Estimation via Multi-view Feature Matching with Occlusion Prediction
Title | Unsupervised Light Field Depth Estimation via Multi-view Feature Matching with Occlusion Prediction |
---|---|
Authors | |
Keywords | Convolutional neural networks Costs Estimation Feature extraction feature matching Image edge detection Light field occlusion prediction Training Training data unsupervised depth estimation |
Issue Date | 2023 |
Citation | IEEE Transactions on Circuits and Systems for Video Technology, 2023 How to Cite? |
Abstract | Depth estimation from light field (LF) images is a fundamental step for numerous applications. Recently, learning-based methods have achieved higher accuracy and efficiency than the traditional methods. However, it is costly to obtain sufficient depth labels for supervised training. In this paper, we propose an unsupervised framework to estimate depth from LF images. First, we design a disparity estimation network (DispNet) with a coarse-to-fine structure to predict disparity maps from different view combinations. It explicitly performs multi-view feature matching to learn the correspondences effectively. As occlusions may cause the violation of photo-consistency, we introduce an occlusion prediction network (OccNet) to predict the occlusion maps, which are used as the element-wise weights of photometric loss to solve the occlusion issue and assist the disparity learning. With the disparity maps estimated by multiple input combinations, we then propose a disparity fusion strategy based on the estimated errors with effective occlusion handling to obtain the final disparity map with higher accuracy. Experimental results demonstrate that our method achieves superior performance on both the dense and sparse LF images, and also shows better robustness and generalization on the real-world LF images compared to the other methods. |
Persistent Identifier | http://hdl.handle.net/10722/330491 |
ISSN | 2023 Impact Factor: 8.3 2023 SCImago Journal Rankings: 2.299 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhang, Shansi | - |
dc.contributor.author | Meng, Nan | - |
dc.contributor.author | Lam, Edmund Y. | - |
dc.date.accessioned | 2023-09-05T12:11:10Z | - |
dc.date.available | 2023-09-05T12:11:10Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | IEEE Transactions on Circuits and Systems for Video Technology, 2023 | - |
dc.identifier.issn | 1051-8215 | - |
dc.identifier.uri | http://hdl.handle.net/10722/330491 | - |
dc.description.abstract | Depth estimation from light field (LF) images is a fundamental step for numerous applications. Recently, learning-based methods have achieved higher accuracy and efficiency than the traditional methods. However, it is costly to obtain sufficient depth labels for supervised training. In this paper, we propose an unsupervised framework to estimate depth from LF images. First, we design a disparity estimation network (DispNet) with a coarse-to-fine structure to predict disparity maps from different view combinations. It explicitly performs multi-view feature matching to learn the correspondences effectively. As occlusions may cause the violation of photo-consistency, we introduce an occlusion prediction network (OccNet) to predict the occlusion maps, which are used as the element-wise weights of photometric loss to solve the occlusion issue and assist the disparity learning. With the disparity maps estimated by multiple input combinations, we then propose a disparity fusion strategy based on the estimated errors with effective occlusion handling to obtain the final disparity map with higher accuracy. Experimental results demonstrate that our method achieves superior performance on both the dense and sparse LF images, and also shows better robustness and generalization on the real-world LF images compared to the other methods. | - |
dc.language | eng | - |
dc.relation.ispartof | IEEE Transactions on Circuits and Systems for Video Technology | - |
dc.subject | Convolutional neural networks | - |
dc.subject | Costs | - |
dc.subject | Estimation | - |
dc.subject | Feature extraction | - |
dc.subject | feature matching | - |
dc.subject | Image edge detection | - |
dc.subject | Light field | - |
dc.subject | occlusion prediction | - |
dc.subject | Training | - |
dc.subject | Training data | - |
dc.subject | unsupervised depth estimation | - |
dc.title | Unsupervised Light Field Depth Estimation via Multi-view Feature Matching with Occlusion Prediction | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1109/TCSVT.2023.3305978 | - |
dc.identifier.scopus | eid_2-s2.0-85168738597 | - |
dc.identifier.eissn | 1558-2205 | - |