File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1038/s41586-023-05704-6
- Scopus: eid_2-s2.0-85148090710
- WOS: WOS:000940770900001
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Targeting TBK1 to overcome resistance to cancer immunotherapy
Title | Targeting TBK1 to overcome resistance to cancer immunotherapy |
---|---|
Authors | Sun, YRevach, OYAnderson, SKessler, EAWolfe, CHJenney, AMills, CERobitschek, EJDavis, TGRKim, SFu, AMAMa, XGwee, JTiwari, PDu, PPSindurakar, PTian, JMehta, ASchneider, AMYizhak, KSade-Feldman, MLaSalle, TSharova, TXie, HYLiu, SMMichaud, WASaad-Beretta, RYates, KBIracheta-Vellve, ASpetz, JKEQin, XPSarosiek, KAZhang, GKim, JWSu, MYCicerchia, AMRasmussen, MQKlempner, SJJuric, DPai, SIMiller, DMGiobbie-Hurder, AChen, JHPelka, KFrederick, DTStinson, SIvanova, EAref, ARPaweletz, CPBarbie, DASen, DRFisher, DECorcoran, RBHacohen, NSorger, PKFlaherty, KTBoland, GMManguso, RTJenkins, RW |
Issue Date | 12-Jan-2023 |
Publisher | Nature Research |
Citation | Nature, 2023, v. 615, n. 7950, p. 158-167 How to Cite? |
Abstract | Despite the success of PD-1 blockade in melanoma and other cancers, effective treatment strategies to overcome resistance to cancer immunotherapy are lacking1,2. Here we identify the innate immune kinase TANK-binding kinase 1 (TBK1)3 as a candidate immune-evasion gene in a pooled genetic screen4. Using a suite of genetic and pharmacological tools across multiple experimental model systems, we confirm a role for TBK1 as an immune-evasion gene. Targeting TBK1 enhances responses to PD-1 blockade by decreasing the cytotoxicity threshold to effector cytokines (TNF and IFNγ). TBK1 inhibition in combination with PD-1 blockade also demonstrated efficacy using patient-derived tumour models, with concordant findings in matched patient-derived organotypic tumour spheroids and matched patient-derived organoids. Tumour cells lacking TBK1 are primed to undergo RIPK- and caspase-dependent cell death in response to TNF and IFNγ in a JAK–STAT-dependent manner. Taken together, our results demonstrate that targeting TBK1 is an effective strategy to overcome resistance to cancer immunotherapy. |
Persistent Identifier | http://hdl.handle.net/10722/331671 |
ISSN | 2023 Impact Factor: 50.5 2023 SCImago Journal Rankings: 18.509 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sun, Y | - |
dc.contributor.author | Revach, OY | - |
dc.contributor.author | Anderson, S | - |
dc.contributor.author | Kessler, EA | - |
dc.contributor.author | Wolfe, CH | - |
dc.contributor.author | Jenney, A | - |
dc.contributor.author | Mills, CE | - |
dc.contributor.author | Robitschek, EJ | - |
dc.contributor.author | Davis, TGR | - |
dc.contributor.author | Kim, S | - |
dc.contributor.author | Fu, AMA | - |
dc.contributor.author | Ma, X | - |
dc.contributor.author | Gwee, J | - |
dc.contributor.author | Tiwari, P | - |
dc.contributor.author | Du, PP | - |
dc.contributor.author | Sindurakar, P | - |
dc.contributor.author | Tian, J | - |
dc.contributor.author | Mehta, A | - |
dc.contributor.author | Schneider, AM | - |
dc.contributor.author | Yizhak, K | - |
dc.contributor.author | Sade-Feldman, M | - |
dc.contributor.author | LaSalle, T | - |
dc.contributor.author | Sharova, T | - |
dc.contributor.author | Xie, HY | - |
dc.contributor.author | Liu, SM | - |
dc.contributor.author | Michaud, WA | - |
dc.contributor.author | Saad-Beretta, R | - |
dc.contributor.author | Yates, KB | - |
dc.contributor.author | Iracheta-Vellve, A | - |
dc.contributor.author | Spetz, JKE | - |
dc.contributor.author | Qin, XP | - |
dc.contributor.author | Sarosiek, KA | - |
dc.contributor.author | Zhang, G | - |
dc.contributor.author | Kim, JW | - |
dc.contributor.author | Su, MY | - |
dc.contributor.author | Cicerchia, AM | - |
dc.contributor.author | Rasmussen, MQ | - |
dc.contributor.author | Klempner, SJ | - |
dc.contributor.author | Juric, D | - |
dc.contributor.author | Pai, SI | - |
dc.contributor.author | Miller, DM | - |
dc.contributor.author | Giobbie-Hurder, A | - |
dc.contributor.author | Chen, JH | - |
dc.contributor.author | Pelka, K | - |
dc.contributor.author | Frederick, DT | - |
dc.contributor.author | Stinson, S | - |
dc.contributor.author | Ivanova, E | - |
dc.contributor.author | Aref, AR | - |
dc.contributor.author | Paweletz, CP | - |
dc.contributor.author | Barbie, DA | - |
dc.contributor.author | Sen, DR | - |
dc.contributor.author | Fisher, DE | - |
dc.contributor.author | Corcoran, RB | - |
dc.contributor.author | Hacohen, N | - |
dc.contributor.author | Sorger, PK | - |
dc.contributor.author | Flaherty, KT | - |
dc.contributor.author | Boland, GM | - |
dc.contributor.author | Manguso, RT | - |
dc.contributor.author | Jenkins, RW | - |
dc.date.accessioned | 2023-09-21T06:57:52Z | - |
dc.date.available | 2023-09-21T06:57:52Z | - |
dc.date.issued | 2023-01-12 | - |
dc.identifier.citation | Nature, 2023, v. 615, n. 7950, p. 158-167 | - |
dc.identifier.issn | 0028-0836 | - |
dc.identifier.uri | http://hdl.handle.net/10722/331671 | - |
dc.description.abstract | <p>Despite the success of PD-1 blockade in melanoma and other cancers, effective treatment strategies to overcome resistance to cancer immunotherapy are lacking<a title="Jenkins, R. W., Barbie, D. A. & Flaherty, K. T. Mechanisms of resistance to immune checkpoint inhibitors. Br. J. Cancer 118, 9–16 (2018)." href="https://www.nature.com/articles/s41586-023-05704-6#ref-CR1">1</a>,<a title="Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017)." href="https://www.nature.com/articles/s41586-023-05704-6#ref-CR2">2</a>. Here we identify the innate immune kinase TANK-binding kinase 1 (<em>TBK1</em>)<a title="Zhou, R., Zhang, Q. & Xu, P. TBK1, a central kinase in innate immune sensing of nucleic acids and beyond. Acta Biochim. Biophys. Sin. 52, 757–767 (2020)." href="https://www.nature.com/articles/s41586-023-05704-6#ref-CR3">3</a> as a candidate immune-evasion gene in a pooled genetic screen<a title="Manguso, R. T. et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547, 413–418 (2017)." href="https://www.nature.com/articles/s41586-023-05704-6#ref-CR4">4</a>. Using a suite of genetic and pharmacological tools across multiple experimental model systems, we confirm a role for <em>TBK1</em> as an immune-evasion gene. Targeting TBK1 enhances responses to PD-1 blockade by decreasing the cytotoxicity threshold to effector cytokines (TNF and IFNγ). TBK1 inhibition in combination with PD-1 blockade also demonstrated efficacy using patient-derived tumour models, with concordant findings in matched patient-derived organotypic tumour spheroids and matched patient-derived organoids. Tumour cells lacking TBK1 are primed to undergo RIPK- and caspase-dependent cell death in response to TNF and IFNγ in a JAK–STAT-dependent manner. Taken together, our results demonstrate that targeting TBK1 is an effective strategy to overcome resistance to cancer immunotherapy.</p> | - |
dc.language | eng | - |
dc.publisher | Nature Research | - |
dc.relation.ispartof | Nature | - |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.title | Targeting TBK1 to overcome resistance to cancer immunotherapy | - |
dc.type | Article | - |
dc.identifier.doi | 10.1038/s41586-023-05704-6 | - |
dc.identifier.scopus | eid_2-s2.0-85148090710 | - |
dc.identifier.volume | 615 | - |
dc.identifier.issue | 7950 | - |
dc.identifier.spage | 158 | - |
dc.identifier.epage | 167 | - |
dc.identifier.eissn | 1476-4687 | - |
dc.identifier.isi | WOS:000940770900001 | - |
dc.identifier.issnl | 0028-0836 | - |