File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Targeting TBK1 to overcome resistance to cancer immunotherapy

TitleTargeting TBK1 to overcome resistance to cancer immunotherapy
Authors
Issue Date12-Jan-2023
PublisherNature Research
Citation
Nature, 2023, v. 615, n. 7950, p. 158-167 How to Cite?
Abstract

Despite the success of PD-1 blockade in melanoma and other cancers, effective treatment strategies to overcome resistance to cancer immunotherapy are lacking1,2. Here we identify the innate immune kinase TANK-binding kinase 1 (TBK1)3 as a candidate immune-evasion gene in a pooled genetic screen4. Using a suite of genetic and pharmacological tools across multiple experimental model systems, we confirm a role for TBK1 as an immune-evasion gene. Targeting TBK1 enhances responses to PD-1 blockade by decreasing the cytotoxicity threshold to effector cytokines (TNF and IFNγ). TBK1 inhibition in combination with PD-1 blockade also demonstrated efficacy using patient-derived tumour models, with concordant findings in matched patient-derived organotypic tumour spheroids and matched patient-derived organoids. Tumour cells lacking TBK1 are primed to undergo RIPK- and caspase-dependent cell death in response to TNF and IFNγ in a JAK–STAT-dependent manner. Taken together, our results demonstrate that targeting TBK1 is an effective strategy to overcome resistance to cancer immunotherapy.


Persistent Identifierhttp://hdl.handle.net/10722/331671
ISSN
2023 Impact Factor: 50.5
2023 SCImago Journal Rankings: 18.509
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorSun, Y-
dc.contributor.authorRevach, OY-
dc.contributor.authorAnderson, S-
dc.contributor.authorKessler, EA-
dc.contributor.authorWolfe, CH-
dc.contributor.authorJenney, A-
dc.contributor.authorMills, CE-
dc.contributor.authorRobitschek, EJ-
dc.contributor.authorDavis, TGR-
dc.contributor.authorKim, S-
dc.contributor.authorFu, AMA-
dc.contributor.authorMa, X-
dc.contributor.authorGwee, J-
dc.contributor.authorTiwari, P-
dc.contributor.authorDu, PP-
dc.contributor.authorSindurakar, P-
dc.contributor.authorTian, J-
dc.contributor.authorMehta, A-
dc.contributor.authorSchneider, AM-
dc.contributor.authorYizhak, K-
dc.contributor.authorSade-Feldman, M-
dc.contributor.authorLaSalle, T-
dc.contributor.authorSharova, T-
dc.contributor.authorXie, HY-
dc.contributor.authorLiu, SM-
dc.contributor.authorMichaud, WA-
dc.contributor.authorSaad-Beretta, R-
dc.contributor.authorYates, KB-
dc.contributor.authorIracheta-Vellve, A-
dc.contributor.authorSpetz, JKE-
dc.contributor.authorQin, XP-
dc.contributor.authorSarosiek, KA-
dc.contributor.authorZhang, G-
dc.contributor.authorKim, JW-
dc.contributor.authorSu, MY-
dc.contributor.authorCicerchia, AM-
dc.contributor.authorRasmussen, MQ-
dc.contributor.authorKlempner, SJ-
dc.contributor.authorJuric, D-
dc.contributor.authorPai, SI-
dc.contributor.authorMiller, DM-
dc.contributor.authorGiobbie-Hurder, A-
dc.contributor.authorChen, JH-
dc.contributor.authorPelka, K-
dc.contributor.authorFrederick, DT-
dc.contributor.authorStinson, S-
dc.contributor.authorIvanova, E-
dc.contributor.authorAref, AR-
dc.contributor.authorPaweletz, CP-
dc.contributor.authorBarbie, DA-
dc.contributor.authorSen, DR-
dc.contributor.authorFisher, DE-
dc.contributor.authorCorcoran, RB-
dc.contributor.authorHacohen, N-
dc.contributor.authorSorger, PK-
dc.contributor.authorFlaherty, KT-
dc.contributor.authorBoland, GM-
dc.contributor.authorManguso, RT-
dc.contributor.authorJenkins, RW-
dc.date.accessioned2023-09-21T06:57:52Z-
dc.date.available2023-09-21T06:57:52Z-
dc.date.issued2023-01-12-
dc.identifier.citationNature, 2023, v. 615, n. 7950, p. 158-167-
dc.identifier.issn0028-0836-
dc.identifier.urihttp://hdl.handle.net/10722/331671-
dc.description.abstract<p>Despite the success of PD-1 blockade in melanoma and other cancers, effective treatment strategies to overcome resistance to cancer immunotherapy are lacking<a title="Jenkins, R. W., Barbie, D. A. & Flaherty, K. T. Mechanisms of resistance to immune checkpoint inhibitors. Br. J. Cancer 118, 9–16 (2018)." href="https://www.nature.com/articles/s41586-023-05704-6#ref-CR1">1</a>,<a title="Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723 (2017)." href="https://www.nature.com/articles/s41586-023-05704-6#ref-CR2">2</a>. Here we identify the innate immune kinase TANK-binding kinase 1 (<em>TBK1</em>)<a title="Zhou, R., Zhang, Q. & Xu, P. TBK1, a central kinase in innate immune sensing of nucleic acids and beyond. Acta Biochim. Biophys. Sin. 52, 757–767 (2020)." href="https://www.nature.com/articles/s41586-023-05704-6#ref-CR3">3</a> as a candidate immune-evasion gene in a pooled genetic screen<a title="Manguso, R. T. et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547, 413–418 (2017)." href="https://www.nature.com/articles/s41586-023-05704-6#ref-CR4">4</a>. Using a suite of genetic and pharmacological tools across multiple experimental model systems, we confirm a role for <em>TBK1</em> as an immune-evasion gene. Targeting TBK1 enhances responses to PD-1 blockade by decreasing the cytotoxicity threshold to effector cytokines (TNF and IFNγ). TBK1 inhibition in combination with PD-1 blockade also demonstrated efficacy using patient-derived tumour models, with concordant findings in matched patient-derived organotypic tumour spheroids and matched patient-derived organoids. Tumour cells lacking TBK1 are primed to undergo RIPK- and caspase-dependent cell death in response to TNF and IFNγ in a JAK–STAT-dependent manner. Taken together, our results demonstrate that targeting TBK1 is an effective strategy to overcome resistance to cancer immunotherapy.</p>-
dc.languageeng-
dc.publisherNature Research-
dc.relation.ispartofNature-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.titleTargeting TBK1 to overcome resistance to cancer immunotherapy-
dc.typeArticle-
dc.identifier.doi10.1038/s41586-023-05704-6-
dc.identifier.scopuseid_2-s2.0-85148090710-
dc.identifier.volume615-
dc.identifier.issue7950-
dc.identifier.spage158-
dc.identifier.epage167-
dc.identifier.eissn1476-4687-
dc.identifier.isiWOS:000940770900001-
dc.identifier.issnl0028-0836-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats