File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: New solutions to the complex Ginzburg-Landau equations

TitleNew solutions to the complex Ginzburg-Landau equations
Authors
Issue Date7-Oct-2022
PublisherAmerican Physical Society
Citation
Physical Review E, 2022, v. 106, n. 4 How to Cite?
Abstract

The various regimes observed in the one-dimensional complex Ginzburg-Landau equation result from the interaction of a very small number of elementary patterns such as pulses, fronts, shocks, holes, and sinks. Here we provide three exact such patterns observed in numerical calculations but never found analytically. One is a quintic case localized homoclinic defect, observed by Popp et al. [S. Popp et al.Phys. Rev. Lett. 70, 3880 (1993)], and the two others are bound states of two quintic dark solitons, observed by Afanasyev et al. [V. V. Afanasyev et al.Phys. Rev. E 57, 1088 (1998)].


Persistent Identifierhttp://hdl.handle.net/10722/331970
ISSN
2023 Impact Factor: 2.2
2023 SCImago Journal Rankings: 0.805
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorConte, R-
dc.contributor.authorMusette, M-
dc.contributor.authorNg, TW-
dc.contributor.authorWu, CF-
dc.date.accessioned2023-09-28T04:59:57Z-
dc.date.available2023-09-28T04:59:57Z-
dc.date.issued2022-10-07-
dc.identifier.citationPhysical Review E, 2022, v. 106, n. 4-
dc.identifier.issn2470-0045-
dc.identifier.urihttp://hdl.handle.net/10722/331970-
dc.description.abstract<p>The various regimes observed in the one-dimensional complex Ginzburg-Landau equation result from the interaction of a very small number of elementary patterns such as pulses, fronts, shocks, holes, and sinks. Here we provide three exact such patterns observed in numerical calculations but never found analytically. One is a quintic case localized homoclinic defect, observed by Popp <em>et al.</em> [S. Popp <em>et al.</em>, <a href="http://dx.doi.org/10.1103/PhysRevLett.70.3880">Phys. Rev. Lett. 70, 3880 (1993)</a>], and the two others are bound states of two quintic dark solitons, observed by Afanasyev <em>et al.</em> [V. V. Afanasyev <em>et al.</em>, <a href="http://dx.doi.org/10.1103/PhysRevE.57.1088">Phys. Rev. E 57, 1088 (1998)</a>].</p>-
dc.languageeng-
dc.publisherAmerican Physical Society-
dc.relation.ispartofPhysical Review E-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.titleNew solutions to the complex Ginzburg-Landau equations-
dc.typeArticle-
dc.identifier.doi10.1103/PhysRevE.106.L042201-
dc.identifier.scopuseid_2-s2.0-85140143280-
dc.identifier.volume106-
dc.identifier.issue4-
dc.identifier.eissn2470-0053-
dc.identifier.isiWOS:000867641500001-
dc.identifier.issnl2470-0045-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats