File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A self-assembled multivalent pseudopolyrotaxane for binding galectin-1

TitleA self-assembled multivalent pseudopolyrotaxane for binding galectin-1
Authors
Issue Date2004
Citation
Journal of the American Chemical Society, 2004, v. 126, n. 38, p. 11914-11922 How to Cite?
AbstractA self-assembled pseudopolyrotaxane consisting of lactoside-displaying cyclodextrin (CD) "beads" threaded onto a linear polyviologen "string" was investigated for its ability to inhibit galectin-1-mediated T-cell agglutination. The CDs of the pseudopolyrotaxane are able to spin around the axis of the polymer chain as well as to move back and forth along its backbone to alter the presentation of its ligand. This supramolecular superstructure incorporates all the advantages of polymeric structures, such as the ability to span large distances, along with a distinctively dynamic presentation of its lactoside ligands to afford a neoglycoconjugate that can adjust to the relative stereochemistries of the lectin's binding sites. The pseudopolyrotaxane exhibited a valency-corrected 10-fold enhancement over native lactose in the agglutination assay, which was greater than the enhancements observed for lactoside-bearing trivalent glycoclusters and a lactoside-bearing chitosan polymer tested using the same assay. The experimental results indicate that supramolecular architectures, such as the pseudopolyrotaxane, provide tools for investigating protein-carbohydrate interactions.
Persistent Identifierhttp://hdl.handle.net/10722/332840
ISSN
2023 Impact Factor: 14.4
2023 SCImago Journal Rankings: 5.489
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorNelson, Alshakim-
dc.contributor.authorBelitsky, Jason M.-
dc.contributor.authorVidal, Sébastien-
dc.contributor.authorJoiner, C. Steven-
dc.contributor.authorBaum, Linda G.-
dc.contributor.authorStoddart, J. Fraser-
dc.date.accessioned2023-10-06T05:14:41Z-
dc.date.available2023-10-06T05:14:41Z-
dc.date.issued2004-
dc.identifier.citationJournal of the American Chemical Society, 2004, v. 126, n. 38, p. 11914-11922-
dc.identifier.issn0002-7863-
dc.identifier.urihttp://hdl.handle.net/10722/332840-
dc.description.abstractA self-assembled pseudopolyrotaxane consisting of lactoside-displaying cyclodextrin (CD) "beads" threaded onto a linear polyviologen "string" was investigated for its ability to inhibit galectin-1-mediated T-cell agglutination. The CDs of the pseudopolyrotaxane are able to spin around the axis of the polymer chain as well as to move back and forth along its backbone to alter the presentation of its ligand. This supramolecular superstructure incorporates all the advantages of polymeric structures, such as the ability to span large distances, along with a distinctively dynamic presentation of its lactoside ligands to afford a neoglycoconjugate that can adjust to the relative stereochemistries of the lectin's binding sites. The pseudopolyrotaxane exhibited a valency-corrected 10-fold enhancement over native lactose in the agglutination assay, which was greater than the enhancements observed for lactoside-bearing trivalent glycoclusters and a lactoside-bearing chitosan polymer tested using the same assay. The experimental results indicate that supramolecular architectures, such as the pseudopolyrotaxane, provide tools for investigating protein-carbohydrate interactions.-
dc.languageeng-
dc.relation.ispartofJournal of the American Chemical Society-
dc.titleA self-assembled multivalent pseudopolyrotaxane for binding galectin-1-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1021/ja0491073-
dc.identifier.pmid15382926-
dc.identifier.scopuseid_2-s2.0-4644331825-
dc.identifier.volume126-
dc.identifier.issue38-
dc.identifier.spage11914-
dc.identifier.epage11922-
dc.identifier.isiWOS:000224103900043-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats